Skip to main content

Flexible Perovskite Solar Cell

  • Chapter
  • First Online:

Abstract

Recent advent of highly efficient perovskite solar cells whose power conversion efficiency is already over 20 % has triggered exploiting emerging photovoltaic devices for niche photovoltaic market. Since the superior photovoltaic performance is realized with ultrathin perovskite layer, these solar cells are suitable for use as power sources in various flexible electronic devices. Especially, plastic substrate based PSCs can be utilized in niche applications such as portable electronic charger, electronic textiles, and large scale industrial roofing. Compared with other flexible solar cell technologies such as Si, Cu(In,Ga)Se2, dye-sensitized, and organic photovoltaic solar cells, the PSC is favorable to realize flexible solar cell due to their low temperature and solution process. In this chapter, we discussed the superior physical properties of perovskite materials for use as flexible solar cell materials underlying superior mechanical durability. Recent progress in flexible PSCs with a high photovoltaic performance was also discussed. Moreover, emerging flexible PSCs such as wire-type, ultralight, and stretchable cells were discussed as a potential game changer for niche photovoltaic market.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yun, H.-G., Bae, B.-S., Kang, M.G.: A simple and highly efficient method for surface treatment of ti substrates for use in dye-sensitized solar cells. Adv. Energy Mater. 1, 337–342 (2011). doi:10.1002/aenm.201000044

    Article  Google Scholar 

  2. Huang, J., Li, C.-Z., Chueh, C.-C., et al.: 10.4 % Power conversion efficiency of ITO-free organic photovoltaics through enhanced light trapping configuration. Adv. Energy. Mater. 5, n/a–n/a (2015). doi:10.1002/aenm.201500406

    Google Scholar 

  3. Chirilă, A., Reinhard, P., Pianezzi, F., et al.: Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nat. Mater. 12, 1107–1111 (2013). doi:10.1038/nmat3789

    Article  Google Scholar 

  4. Research Cell Efficiency Records, National Center for Photovoltaics, Denver. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (2016). Accessed 09 Mar 2016

  5. Yang, D., Yang, R., Zhang, J., et al.: High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci. 8, 3208–3214 (2015). doi:10.1039/C5EE02155C

    Article  Google Scholar 

  6. Kim, B.J., Kim, D.H., Lee, Y.-Y., et al.: Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8, 916–921 (2015). doi:10.1039/C4EE02441A

    Article  Google Scholar 

  7. Stranks, S.D., Eperon, G.E., Grancini, G., et al.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). doi:10.1126/science.1243982

    Article  Google Scholar 

  8. Im, J.-H., Lee, C.-R., Lee, J.-W., et al.: 6.5 % efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4096 (2011). doi:10.1039/c1nr10867k

    Article  Google Scholar 

  9. Ke, W., Wan, J., Tao, H., et al.: Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat. Commun. 6, 1–7 (2015). doi:10.1038/ncomms7700

    Article  Google Scholar 

  10. Mei, A., Li, X., Liu, L., et al.: A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014). doi:10.1126/science.1254763

    Article  Google Scholar 

  11. Eperon, G.E., Burlakov, V.M., Goriely, A., Snaith, H.J.: Neutral color semitransparent microstructured perovskite solar cells. ACS Nano 8, 591–598 (2014). doi:10.1021/nn4052309

    Article  Google Scholar 

  12. Suarez, B., Gonzalez-Pedro, V., Ripolles, T.S., et al.: Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J. Phys. Chem. Lett. 5, 1628–1635 (2014). doi:10.1021/jz5006797

    Article  Google Scholar 

  13. Noh, J.H., Im, S.H., Heo, J.H., et al.: Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013). doi:10.1021/nl400349b

    Article  Google Scholar 

  14. Feng, J.: Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater. 2, 081801–081809 (2014). doi:10.1063/1.4885256

    Article  Google Scholar 

  15. Poorkazem, K., Liu, D., Kelly, T.L.: Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell. J. Mater. Chem. A: Mater. Energy Sustain. 3, 9241–9248 (2015). doi:10.1039/C5TA00084J

    Article  Google Scholar 

  16. Kumar, M.H., Yantara, N., Dharani, S., et al.: Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 49, 11089–11093 (2013). doi:10.1039/c3cc46534a

    Article  Google Scholar 

  17. Docampo, P., Ball, J.M., Darwich, M., et al.: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 1–6 (2013). doi:10.1038/ncomms3761

  18. Qiu, L., Deng, J., Lu, X., et al.: Integrating perovskite solar cells into a flexible fiber. Angew. Chem. Int. Ed. 53, 10425–10428 (2014). doi:10.1002/anie.201404973

    Article  Google Scholar 

  19. Roldán-Carmona, C., Malinkiewicz, O., Soriano, A., et al.: Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 7, 994–1004 (2014). doi:10.1039/c3ee43619e

    Article  Google Scholar 

  20. You, J., Hong, Z., Yang, Y.M., et al.: Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674–1680 (2014). doi:10.1021/nn406020d

    Article  Google Scholar 

  21. Liu, D., Kelly, T.L.: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133–138 (2013). doi:10.1038/nphoton.2013.342

    Article  Google Scholar 

  22. Lee, M., Jo, Y., Kim, D.S., Jun, Y.: Flexible organo-metal halide perovskite solar cells on a Ti metal substrate. J. Mater. Chem. A: Mater. Energy Sustain. 3, 4129–4133 (2015). doi:10.1039/C4TA06011C

    Article  Google Scholar 

  23. Lee, M., Jo, Y., Kim, D.S., et al.: Efficient, durable and flexible perovskite photovoltaic devices with Ag-embedded ITO as the top electrode on a metal substrate. J. Mater. Chem. A: Mater. Energy Sustain. 3, 14592–14597 (2015). doi:10.1039/C5TA03240G

    Article  Google Scholar 

  24. Troughton, J., Bryant, D., Wojciechowski, K., et al.: Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. J. Mater. Chem. A: Mater. Energy Sustain. 3, 9141–9145 (2015). doi:10.1039/C5TA01755F

    Article  Google Scholar 

  25. Deng, J., Qiu, L., Lu, X., et al.: Elastic perovskite solar cells. J. Mater. Chem. A: Mater. Energy Sustain. 3, 21070–21076 (2015). doi:10.1039/C5TA06156C

    Article  Google Scholar 

  26. Lee, M., Ko, Y., Jun, Y.: Efficient fiber-shaped perovskite photovoltaics using silver nanowires as top electrode. J. Mater. Chem. A: Mater. Energy Sustain. 3, 19310–19313 (2015). doi:10.1039/C5TA02779A

    Article  Google Scholar 

  27. Li, R., Xiang, X., Tong, X., et al.: Wearable double-twisted fibrous perovskite solar cell. Adv. Mater. 27, 3831–3835 (2015). doi:10.1002/adma.201501333

    Article  Google Scholar 

  28. Schmidt, T.M., Larsen-Olsen, T.T., Carlé, J.E., et al.: Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv. Energy Mater. 5, n/a–n/a (2015). doi:10.1002/aenm.201500569

    Google Scholar 

  29. Di Giacomo, F., Zardetto, V., D’Epifanio, A., et al.: Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv. Energy Mater. 5, n/a–n/a (2015). doi:10.1002/aenm.201401808

    Google Scholar 

  30. Chen, C., Cheng, Y., Dai, Q., Song, H.: Radio frequency magnetron sputtering deposition of TiO2 thin films and their perovskite solar cell applications. Sci. Rep. 1–12 (2015). doi:10.1038/srep17684

  31. Park, M., Kim, H.J., Jeong, I., et al.: Mechanically recoverable and highly efficient perovskite solar cells: investigation of intrinsic flexibility of organic-inorganic perovskite. Adv. Energy Mater. 5, n/a–n/a (2015). doi:10.1002/aenm.201501406

    Google Scholar 

  32. Kaltenbrunner, M., Adam, G., Głowacki, E.D., et al.: Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015). doi:10.1038/nmat4388

    Article  Google Scholar 

  33. Xu, X., Chen, Q., Hong, Z., et al.: Working mechanism for flexible perovskite solar cells with simplified architecture. Nano Lett. 15, 6514–6520 (2015). doi:10.1021/acs.nanolett.5b02126

    Article  Google Scholar 

  34. Qiu, W., Paetzold, U.W., Gehlhaar, R., et al.: An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. J. Mater. Chem. A: Mater. Energy Sustain. 3, 22824–22829 (2015). doi:10.1039/C5TA07515G

    Article  Google Scholar 

  35. Yao, K., Wang, X., Xu, Y.-X., Li, F.: A general fabrication procedure for efficient and stable planar perovskite solar cells: morphological and interfacial control by in-situ-generated layered perovskite. Nano Energy 18, 165–175 (2015). doi:10.1016/j.nanoen.2015.10.010

    Article  Google Scholar 

  36. Shin, S.S., Yang, W.S., Noh, J.H., et al.: High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 6, 1–8 (2015). doi:10.1038/ncomms8410

    Google Scholar 

  37. Jung, H.S., Park, N.-G.: Perovskite solar cells: from materials to devices. Small 11, 10–25 (2014). doi:10.1002/smll.201402767

    Article  Google Scholar 

  38. Weerasinghe, H.C., Dkhissi, Y., Scully, A.D., et al.: Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy 18, 118–125 (2015). doi:10.1016/j.nanoen.2015.10.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Suk Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, B.J., Jung, H.S. (2016). Flexible Perovskite Solar Cell. In: Park, NG., Grätzel, M., Miyasaka, T. (eds) Organic-Inorganic Halide Perovskite Photovoltaics. Springer, Cham. https://doi.org/10.1007/978-3-319-35114-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35114-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35112-4

  • Online ISBN: 978-3-319-35114-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics