Skip to main content

Hysteresis Characteristics and Device Stability

  • Chapter
  • First Online:
Organic-Inorganic Halide Perovskite Photovoltaics

Abstract

The continuous and skyrocketing rise in power conversion efficiency (PCE) of the organometal halide perovskite solar cells (J Am Chem Soc 131:6050–6051, (2009) [1], Science 338:643–647, (2012) [2], Science 345:542–546, (2014) [3]) has attracted enormous attention recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  Google Scholar 

  2. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Article  Google Scholar 

  3. Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-B., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014)

    Article  Google Scholar 

  4. Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014)

    Article  Google Scholar 

  5. Naoki, K., Yasuo, C., Liyuan, H.: Methods of measuring energy conversion efficiency in dye-sensitized solar cells. Jpn. J. Appl. Phys. 44, 4176 (2005)

    Article  Google Scholar 

  6. Editorial, Solar cell woes. Nat. Photon. 8, 665–665 (2014)

    Google Scholar 

  7. Editorial, Bringing solar cell efficiencies into the light. Nat. Nano. 9, 657–657 (2014)

    Google Scholar 

  8. Editorial, Perovskite fever. Nat. Mater. 13, 837–837 (2014)

    Google Scholar 

  9. Kim, H.-S., Jang, I.-H., Ahn, N., Choi, M., Guerrero, A., Bisquert, J., Park, N.-G.: Control of I-V Hysteresis in CH3NH3PbI3 Perovskite Solar Cell. J. Phys. Chem. Lett. 6, 4633–4639 (2015)

    Article  Google Scholar 

  10. Heo, J.H., Han, H.J., Kim, D., Ahn, T.K., Im, S.H.: Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1 % power conversion efficiency. Energy Environ. Sci. 8, 1602–1608 (2015)

    Article  Google Scholar 

  11. Wu, C.-G., Chiang, C.-H., Tseng, Z.-L., Nazeeruddin, M.K., Hagfeldt, A., Gratzel, M.: High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ. Sci. 8, 2725–2733 (2015)

    Article  Google Scholar 

  12. Yin, X., Que, M., Xing, Y., Que, W.: High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer. J. Mater. Chem. A 3, 24495–24503 (2015)

    Article  Google Scholar 

  13. Tripathi, N., Yanagida, M., Shirai, Y., Masuda, T., Han, L., Miyano, K.: Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method. J. Mater. Chem. A 3, 12081–12088 (2015)

    Article  Google Scholar 

  14. Zhang, H., Liang, C., Zhao, Y., Sun, M., Liu, H., Liang, J., Li, D., Zhang, F., He, Z.: Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells. Phys. Chem. Chem. Phys. 17, 9613–9618 (2015)

    Article  Google Scholar 

  15. Chen, L.-C., Chen, J.-C., Chen, C.-C., Wu, C.-G.: Fabrication and properties of high-efficiency perovskite/PCBM organic solar cells. Nanoscale Res. Lett. 10, 1–5 (2015)

    Article  Google Scholar 

  16. Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T.-W., Wojciechowski, K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)

    Article  Google Scholar 

  17. Kim, H.-S., Park, N.-G.: Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett, 5, 2927–2934 (2014)

    Article  Google Scholar 

  18. Chen, S., Lei, L., Yang, S., Liu, Y., Wang, Z.-S.: Characterization of perovskite obtained from two-step deposition on mesoporous titania. ACS Appl. Mater. Interfaces 7, 25770–25776 (2015)

    Article  Google Scholar 

  19. Binglong, L., Vincent Obiozo, E., Tatsuo, M.: High-performance CH 3 NH 3 PbI 3 perovskite solar cells fabricated under ambient conditions with high relative humidity. Jpn. J. Appl. Phys. 54, 100305 (2015)

    Article  Google Scholar 

  20. Tress, W., Marinova, N., Moehl, T., Zakeeruddin, S.M., Nazeeruddin, M.K., Gratzel, M.: Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015)

    Article  Google Scholar 

  21. Unger, E.L., Hoke, E.T., Bailie, C.D., Nguyen, W.H., Bowring, A.R., Heumuller, T., Christoforo, M.G., McGehee, M.D.: Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014)

    Article  Google Scholar 

  22. Chen, B., Yang, M., Zheng, X., Wu, C., Li, W., Yan, Y., Bisquert, J., Garcia-Belmonte, G., Zhu, K., Priya, S.: Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 6, 4693–4700 (2015)

    Article  Google Scholar 

  23. Christians, J.A., Manser, J.S., Kamat, P.V.: Best practices in perovskite solar cell efficiency measurements. Avoiding the error of making bad cells look good. J. Phys. Chem. Lett. 6, 852–857 (2015)

    Article  Google Scholar 

  24. Ono, L.K., Raga, S.R., Wang, S., Kato, Y., Qi, Y.: Temperature-dependent hysteresis effects in perovskite-based solar cells. J. Mater. Chem. A 3, 9074–9080 (2015)

    Article  Google Scholar 

  25. Meloni, S., Moehl, T., Tress, W., Franckevicius, M., Saliba, M., Lee, Y.H., Gao, P., Nazeeruddin, M.K., Zakeeruddin, S.M., Rothlisberger, U., Graetzel, M.: Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 7 (2016)

    Google Scholar 

  26. Bryant, D., Wheeler, S., O’Regan, B.C., Watson, T., Barnes, P.R.F., Worsley, D., Durrant, J.: Observable hysteresis at low temperature in “Hysteresis Free” organic-inorganic lead halide perovskite solar cells. J. Phys. Chem. Lett. 6, 3190–3194 (2015)

    Article  Google Scholar 

  27. Chen, H.-W., Sakai, N., Ikegami, M., Miyasaka, T.: Emergence of hysteresis and transient ferroelectric response in organo-lead halide perovskite solar cells. J. Phys. Chem. Lett. 6, 164–169 (2014)

    Article  Google Scholar 

  28. Lyu, M., Yun, J.-H., Ahmed, R., Elkington, D., Wang, Q., Zhang, M., Wang, H., Dastoor, P., Wang, L.: Bias-dependent effects in planar perovskite solar cells based on CH3NH3PbI3–xClx films. J. Colloid Interface Sci. 453, 9–14 (2015)

    Article  Google Scholar 

  29. Wei, J., Zhao, Y., Li, H., Li, G., Pan, J., Xu, D., Zhao, Q., Yu, D.: Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. J. Phys. Chem. Lett. 5, 3937–3945 (2014)

    Article  Google Scholar 

  30. Frost, J.M., Butler, K.T., Walsh, A.: Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2 (2014)

    Google Scholar 

  31. Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013)

    Article  Google Scholar 

  32. Yasemin Kutes, L.Y., Zhou, Yuanyuan, Pang, Shuping, Huey, Bryan D., Padture, Nitin P.: Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J. Phys. Chem. Lett. 5, 3335–3339 (2014)

    Article  Google Scholar 

  33. Kim, H.-S., Kim, S.K., Kim, B.J., Shin, K.-S., Gupta, M.K., Jung, H.S., Kim, S.-W., Park, N.-G.: Ferroelectric polarization in CH3NH3PbI3 perovskite. J. Phys. Chem. Lett. 6, 1729–1735 (2015)

    Article  Google Scholar 

  34. Chen, B., Zheng, X., Yang, M., Zhou, Y., Kundu, S., Shi, J., Zhu, K., Priya, S.: Interface band structure engineering by ferroelectric polarization in perovskite solar cells. Nano Energy 13, 582–591 (2015)

    Article  Google Scholar 

  35. Fan, Z., Xiao, J., Sun, K., Chen, L., Hu, Y., Ouyang, J., Ong, K.P., Zeng, K., Wang, J.: Ferroelectricity of CH3NH3PbI3 perovskite. J. Phys. Chem. Lett. 6, 1155–1161 (2015)

    Article  Google Scholar 

  36. Jena, A.K., Chen, H.-W., Kogo, A., Sanehira, Y., Ikegami, M., Miyasaka, T.: The interface between FTO and the TiO2 compact layer can be one of the origins to hysteresis in planar heterojunction perovskite solar cells. ACS Appl. Mater. Interfaces 7, 9817–9823 (2015)

    Article  Google Scholar 

  37. Wojciechowski, K., Stranks, S.D., Abate, A., Sadoughi, G., Sadhanala, A., Kopidakis, N., Rumbles, G., Li, C.-Z., Friend, R.H., Jen, A.K.Y., Snaith, H.J.: Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. ACS Nano 8, 12701–12709 (2014)

    Article  Google Scholar 

  38. Nagaoka, H., Ma, F., deQuilettes, D.W., Vorpahl, S.M., Glaz, M.S., Colbert, A.E., Ziffer, M.E., Ginger, D.S.: Zr incorporation into TiO2 electrodes reduces hysteresis and improves performance in hybrid perovskite solar cells while increasing carrier lifetimes. J. Phys. Chem. Lett. 6, 669–675 (2015)

    Article  Google Scholar 

  39. Yuan, Z., Wu, Z., Bai, S., Xia, Z., Xu, W., Song, T., Wu, H., Xu, L., Si, J., Jin, Y., Sun, B.: Hot-electron injection in a sandwiched TiOx–Au–TiOx structure for high-performance planar perovskite solar cells. Adv. Energy Mater. (2015). (n/a-n/a)

    Google Scholar 

  40. Im, S.H., Heo, J.-H., Han, H.J., Kim, D., Ahn, T.: 18.1 % hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells. Energy Environ. Sci. (2015)

    Google Scholar 

  41. Tao, C., Neutzner, S., Colella, L., Marras, S., Srimath Kandada, A.R., Gandini, M., De Bastiani, M., Pace, G., Manna, L., Caironi, M., Bertarelli, C., Petrozza, A.: 17.6 % steady state efficiency in low temperature processed planar perovskite solar cells. Energy Environ. Sci. (2015)

    Google Scholar 

  42. Bergmann, V.W., Weber, S.A.L., Javier Ramos, F., Nazeeruddin, M.K., Grätzel, M., Li, D., Domanski, A.L., Lieberwirth, I., Ahmad, S., Berger, R.: Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. 5 (2014)

    Google Scholar 

  43. Cojocaru, L., Uchida, S., Jayaweera, P.V.V., Kaneko, S., Nakazaki, J., Kubo, T., Segawa, H.: Origin of the hysteresis in I-V curves for planar structure perovskite solar cells rationalized with a surface boundary-induced capacitance model. Chem. Lett. 44, 1750–1752 (2015)

    Article  Google Scholar 

  44. Tubbs, M.R.: The optical properties and chemical decomposition of halides with layer structures. II. defects, chemical decomposition, and photographic phenomena. Physica Status Solidi (b), 67, 11–49 (1975)

    Google Scholar 

  45. Haruyama, J., Sodeyama, K., Han, L., Tateyama, Y.: First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015)

    Article  Google Scholar 

  46. Eames, C., Frost, J.M., Barnes, P.R.F., O/’Regan, B.C., Walsh, A., Islam, M.S.: Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6 (2015)

    Google Scholar 

  47. Alberti, A., Deretzis, I., Pellegrino, G., Bongiorno, C., Smecca, E., Mannino, G., Giannazzo, F., Condorelli, G.G., Sakai, N., Miyasaka, T., Spinella, C., La Magna, A.: Similar structural dynamics for the degradation of CH3NH3PbI3 in air and in vacuum. ChemPhysChem 16, 3064–3071 (2015)

    Article  Google Scholar 

  48. Zhang, Y., Liu, M., Eperon, G.E., Leijtens, T.C., McMeekin, D., Saliba, M., Zhang, W., de Bastiani, M., Petrozza, A., Herz, L.M., Johnston, M.B., Lin, H., Snaith, H.J.: Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells. Mater. Horiz. 2, 315–322 (2015)

    Article  Google Scholar 

  49. Zhao, Y., Liang, C., Zhang, H., Li, D., Tian, D., Li, G., Jing, X., Zhang, W., Xiao, W., Liu, Q., Zhang, F., He, Z.: Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites. Energy Environ. Sci. 8, 1256–1260 (2015)

    Article  Google Scholar 

  50. Li, C., Tscheuschner, S., Paulus, F., Hopkinson, P.E., Kießling, J., Köhler, A., Vaynzof, Y., Huettner, S.: Iodine migration and its effect on hysteresis in perovskite solar cells. Adv. Mater. (2016). (n/a-n/a)

    Google Scholar 

  51. Yu, H., Lu, H., Xie, F., Zhou, S., Zhao, N.: Native defect-induced hysteresis behavior in organolead iodide perovskite solar cells. Adv. Funct. Mater. 26, 1411–1419 (2016)

    Article  Google Scholar 

  52. Richardson, G., O’Kane, S.E.J., Niemann, R.G., Peltola, T.A., Foster, J.M., Cameron, P.J., Walker, A.B.: Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?. Energy Environ. Sci. (2016)

    Google Scholar 

  53. Almora, O., Zarazua, I., Mas-Marza, E., Mora-Sero, I., Bisquert, J., Garcia-Belmonte, G.: Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells. J. Phys. Chem. Lett. 6, 1645–1652 (2015)

    Article  Google Scholar 

  54. Zhou, Y., Huang, F., Cheng, Y.-B., Gray-Weale, A.: Photovoltaic performance and the energy landscape of CH3NH3PbI3. Phys. Chem. Chem. Phys. 17, 22604–22615 (2015)

    Article  Google Scholar 

  55. van Reenen, S., Kemerink, M., Snaith, H.J.: Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett, 6, 3808–3814 (2015)

    Article  Google Scholar 

  56. Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J.: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5 (2014)

    Google Scholar 

  57. Li, W., Dong, H., Dong, G., Wang, L.: Hystersis mechanism in perovskite photovoltaic devices and its potential application for multi-bit memory devices. Org. Electron. 26, 208–212 (2015)

    Article  Google Scholar 

  58. Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K., Losovyj, Y., Zhang, X., Dowben, P.A., Mohammed, O.F., Sargent, E.H., Bakr, O.M.: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015)

    Article  Google Scholar 

  59. Oga, H., Saeki, A., Ogomi, Y., Hayase, S., Seki, S.: Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014)

    Article  Google Scholar 

  60. Xu, J., Buin, A., Ip, A.H., Li, W., Voznyy, O., Comin, R., Yuan, M., Jeon, S., Ning, Z., McDowell, J.J., Kanjanaboos, P., Sun, J.-P., Lan, X., Quan, L.N., Kim, D.H., Hill, I.G., Maksymovych, P., Sargent, E.H.: Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6 (2015)

    Google Scholar 

  61. Ryu, S., Seo, J., Shin, S.S., Kim, Y.C., Jeon, N.J., Noh, J.H., Seok, S.I.: Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature. J. Mater. Chem. A 3, 3271–3275 (2015)

    Article  Google Scholar 

  62. Bi, D., Tress, W., Dar, M.I., Gao, P., Luo, J., Renevier, C., Schenk, K., Abate, A.,  Giordano, F., Correa Baena, J.–P., Decoppet, J.–D., Zakeeruddin, S.M., Nazeeruddin, M.K., Grätzel, M., Hagfeldt, A.: Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016)

    Google Scholar 

  63. Saliba, M., Matsui, T., Seo, J.Y., Domanski, K., Correa-Baena, J.–P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M.: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. (2016). doi:10.1039/c5ee03874j

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Miyasaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jena, A.K., Miyasaka, T. (2016). Hysteresis Characteristics and Device Stability. In: Park, NG., Grätzel, M., Miyasaka, T. (eds) Organic-Inorganic Halide Perovskite Photovoltaics. Springer, Cham. https://doi.org/10.1007/978-3-319-35114-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35114-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35112-4

  • Online ISBN: 978-3-319-35114-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics