Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter starts with a brief description of the technique and how to calculate the strain induced by high-pressure torsion (HPT). Thereafter, the effect of HPT on different classes of metal hydrides is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bridgman, P.W.: On torsion combined with compression. J. Appl. Phys. 15(6), 273–283 (1943)

    Article  Google Scholar 

  2. Bridgman, P.W.: Effects of high shearing stress combined with high hydrostatic pressure. Phys. Rev. 48(10), 825–847 (1935)

    Article  Google Scholar 

  3. Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45, 103–189 (2000)

    Article  Google Scholar 

  4. Zhilyaev, A.P., Langdon, T.G.: Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater Sci. 53(6), 893–979 (2008)

    Article  Google Scholar 

  5. Edalati, K., Horita, Z.: A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A 652, 325–352 (2016). doi:10.1016/j.msea.2015.11.074

    Article  Google Scholar 

  6. Hohenwarter, A., Bachmaier, A., Gludovatz, B., Scheriau, S., Pippan, R.: Technical parameters affecting grain refinement by high pressure torsion. Int. J. Mater. Res. 100(12), 1653–1661 (2009). doi:10.3139/146.110224

    Article  Google Scholar 

  7. Sergueeva, A.V., Song, C., Valiev, R.Z., Mukherjee, A.K.: Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing. Mater. Sci. Eng. A 339(1–2), 159–165 (2003). doi:10.1016/s0921-5093(02)00122-3

    Article  Google Scholar 

  8. Leiva, D.R., Jorge, A.M., Ishikawa, T.T., Huot, J., Fruchart, D., Miraglia, S., Kiminami, C.S., Botta, W.J.: Nanoscale grain refinement and H-Sorption properties of MgH2 processed by high-pressure torsion and other mechanical routes. Adv. Eng. Mater. 12(8), 786–792 (2010)

    Article  Google Scholar 

  9. Bonarski, B.J., Schafler, E., Mingler, B., Skrotzki, W., Mikulowski, B., Zehetbauer, M.J.: Texture evolution of Mg during high-pressure torsion. J. Mater. Sci. 43(23–24), 7513–7518 (2008). doi:10.1007/s10853-008-2794-8

    Article  Google Scholar 

  10. Edalati, K., Yamamoto, A., Horita, Z., Ishihara, T.: High-pressure torsion of pure magnesium: evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scr. Mater. 64(9), 880–883 (2011). doi:10.1016/j.scriptamat.2011.01.023

    Article  Google Scholar 

  11. Kusadome, Y., Ikeda, K., Nakamori, Y., Orimo, S., Horita, Z.: Hydrogen storage capability of MgNi2 processed by high pressure torsion. Scr. Mater. 57(8), 751–753 (2007)

    Article  Google Scholar 

  12. Révész, Á., Kánya, Z., Verebélyi, T., Szabó, P.J., Zhilyaev, A.P., Spassov, T.: The effect of high-pressure torsion on the microstructure and hydrogen absorption kinetics of ball-milled Mg70Ni30. J. Alloy. Compd. 504(1), 83–88 (2010)

    Article  Google Scholar 

  13. Révész, Á., Kis-Tóth, Á., Varga, L.K., Schafler, E., Bakonyi, I., Spassov, T.: Hydrogen storage of melt-spun amorphous Mg65Ni20Cu5Y10 alloy deformed by high-pressure torsion. Int. J. Hydrogen Energy 37(7), 5769–5776 (2012). doi:10.1016/j.ijhydene.2011.12.160

    Article  Google Scholar 

  14. Hongo, T., Edalati, K., Arita, M., Matsuda, J., Akiba, E., Horita, Z.: Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion. Acta Mater. 92, 46–54 (2015). doi:10.1016/j.actamat.2015.03.036

    Article  Google Scholar 

  15. Huot, J., Swainson, I., Schulz, R.: Phase transformation in magnesium hydride induced by ball milling. Ann. Chim. Sci. Mat. 31(1), 135–144 (2006)

    Article  Google Scholar 

  16. Lima, G.F., Jorge, A.M., Leiva, D.R., Kiminami, C.S., Bolfarini, C., Botta, W.J.: Severe plastic deformation of Mg-Fe powders to produce bulk hydrides—art. no. 012015. In: Schultz, L., Eckert, J., Battezzati, L., Stoica, M. (eds.) 13th International Conference on Rapidly Quenched and Metastable Materials, vol. 144. Journal of Physics Conference Series, pp. 12015–12015. Iop Publishing Ltd, Bristol (2009)

    Google Scholar 

  17. Bonisch, M., Zehetbauer, M.J., Krystian, M., Setman, D., Krexner, G.: Stabilization of lattice defects in HPT-deformed palladium hydride. In: Wang, J.T., Figueiredo, R.B., Langdon, T.G. (eds.) Nanomaterials by Severe Plastic Deformation: Nanospd5, Pts 1 and 2, vol. 667–669. Materials Science Forum, pp. 427–432. (2011)

    Google Scholar 

  18. Krystian, M., Setman, D., Mingler, B., Krexner, G., Zehetbauer, M.J.: Formation of superabundant vacancies in nano-Pd–H generated by high-pressure torsion. Scr. Mater. 62(1), 49–52 (2010). doi:10.1016/j.scriptamat.2009.09.025

    Article  Google Scholar 

  19. Hongo, T., Edalati, K., Iwaoka, H., Arita, M., Matsuda, J., Akiba, E., Horita, Z.: High-pressure torsion of palladium: hydrogen-induced softening and plasticity in ultrafine grains and hydrogen-induced hardening and embrittlement in coarse grains. Mater. Sci. Eng. A 618, 1–8 (2014). doi:10.1016/j.msea.2014.08.074

    Article  Google Scholar 

  20. Chung, H.S., Lee, J.-Y.: Hydriding and dehydriding reaction rate of FeTi intermetallic compound. Int. J. Hydrogen Energy 10(7–8), 537–542 (1985). doi:10.1016/0360-3199(85)90084-9

    Article  Google Scholar 

  21. Trudeau, M.L., Dignard-Bailey, L., Schulz, R., Tessier, P., Zaluski, L., Ryan, D.H., Strom-Olsen, J.O.: The oxidation of nanocrystalline FeTi hydrogen storage compounds. Nanostruct. Mater. 1, 457–464 (1992)

    Article  Google Scholar 

  22. Edalati, K., Matsuda, J., Arita, M., Daio, T., Akiba, E., Horita, Z.: Mechanism of activation of TiFe intermetallics for hydrogen storage by severe plastic deformation using high-pressure torsion. Appl. Phys. Lett. 103(14), 14902 (2013). doi:10.1063/1.4823555

    Article  Google Scholar 

  23. Edalati, K., Matsuda, J., Iwaoka, H., Toh, S., Akiba, E., Horita, Z.: High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure. Int. J. Hydrogen Energy 38(11), 4622–4627 (2013). doi:10.1016/j.ijhydene.2013.01.185

    Article  Google Scholar 

  24. Edalati, K., Matsuda, J., Yanagida, A., Akiba, E., Horita, Z.: Activation of TiFe for hydrogen storage by plastic deformation using groove rolling and high-pressure torsion: similarities and differences. Int. J. Hydrogen Energy 39(28), 15589–15594 (2014). doi:10.1016/j.ijhydene.2014.07.124

    Article  Google Scholar 

  25. Emami, H., Edalati, K., Matsuda, J., Akiba, E., Horita, Z.: Hydrogen storage performance of TiFe after processing by ball milling. Acta Mater. 88, 190–195 (2015). doi:10.1016/j.actamat.2014.12.052

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Huot .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Huot, J. (2016). High-Pressure Torsion. In: Enhancing Hydrogen Storage Properties of Metal Hybrides. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-35107-0_4

Download citation

Publish with us

Policies and ethics