Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 515 Accesses

Abstract

A general description of nanocrystalline materials is given. The conditions for obtaining a nanostructure are briefly discussed. Measurement of the crystallite size and microstrain by Rietveld method is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tjong, S.C., Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng., R 45(1–2), 1–88 (2004). doi:10.1016/j.mser.2004.07.001

    Article  Google Scholar 

  2. Noskova, N.I., Mulyukov, R.R.: Physical fundamentals of formation and stabilization of nanostructures in metals and multiphase alloys under severe plastic deformation. In: Altan, B.S. (ed.) Severe plastic deformation: Toward bulk production of nanostructured materials, pp. 23–36. Nova Science Publishers, New York (2006)

    Google Scholar 

  3. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater Sci. 46(1–2), 1–184 (2001)

    Article  Google Scholar 

  4. Scardi, P.: Microstructural properties: lattice defects and domain size effects. In: Dinnebier, R.E., Billinge, S.J.L. (eds.) Powder Diffraction: Theory and Practice, p. 582. RSC Publishing, Cambridge (2008)

    Google Scholar 

  5. Lin, H.C., Lin, K.M., Wu, K.C., Hsiung, H.H., Tsai, H.K., Wu, K.C., Hsiung, H.H., Tsai, H.K.: Cyclic hydrogen absorption–desorption characteristics of TiCrV and Ti0.8Cr1.2V alloys. Int. J. Hydrogen Energy 32, 4966–4972 (2007)

    Article  Google Scholar 

  6. Young, R.A.: The rietveld method. In: Young, R.A. (ed.) IUCr Monographs on Crystallography-5, p. 298. Oxford University Press, Oxford (1993)

    Google Scholar 

  7. Dreele, R.B.V.: Rietveld refinement. In: Dinnebier, R.E., Billinge, S.J.L. (eds.) Powder Diffraction: Theory and Practice, p. 582. RSC Publishing, Cambridge (2008)

    Google Scholar 

  8. Cranswick, L.M.D.: Computer software for powder diffraction. In: Dinnebier, R.E., Billinge, S.J.L. (eds.) Powder Diffraction: Theory and Practice, p. 582. RSC Publishing, Cambridge (2008)

    Google Scholar 

  9. Cheary, R.W., Coelho, A.A., Cline, J.P.: Fundamental parameters line profile fitting in laboratory diffractometers. J. Res. Nat. Inst. Stand. Technol. 109(1), 1–25 (2004)

    Article  Google Scholar 

  10. Gayle, F.W., Biancaniello, F.S.: Stacking faults and crystallite size in mechanically alloyed Cu–Co. Nanostruct. Mater. 6(1–4), 429–432 (1995). doi:10.1016/0965-9773(95)00088-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Huot .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Huot, J. (2016). Nanostructured Materials. In: Enhancing Hydrogen Storage Properties of Metal Hybrides. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-35107-0_2

Download citation

Publish with us

Policies and ethics