Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 497 Accesses

Abstract

An inventory of 1534 debris flow systems and 240 related debris flow events, established for thirteen study areas by aerial photo interpretation, represents the core data of this research. The mapped debris flow systems (described by debris flow initiation zones and corresponding regolith-supplying catchments) serve as the spatial analysis units for the statistical evaluation of predisposing controls for debris flow formation in Chap. 5 . Mapped events are interpreted as indicating debris flow systems particularly susceptible to debris flow development. This chapter provides basic information on debris flows, describes the selected study sites, outlines the methodological approach used for mapping debris flow systems and events, describes the established debris flow inventory, and discusses inferred aspects of debris flow activity in the Southern Alps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahnert F (1998) Introduction to geomorphology. Arnold, London

    Google Scholar 

  • André M-F (2003) Do periglacial landscapes evolve under periglacial conditions? Geomorphology 52(1–2):149–164. doi:10.1016/s0169-555x(02)00255-6

    Article  Google Scholar 

  • Augustinus P (1995) Rock mass strength and the stability of some glacial valley slopes. Zeitschrift für Geomorphologie 39(1):55–68

    Google Scholar 

  • Bacon SN, Chinn TJ, Van Dissen RJ, Tillinghast SF, Goldstein HL, Burke RM (2001) Paleo-equilibrium line altitude estimates from late Quaternary glacial features in the Inland Kaikoura Range, South Island, New Zealand. NZ J Geol Geophys 44(1):55–67. doi:10.1080/00288306.2001.9514922

    Article  Google Scholar 

  • Ballantyne CK (1986) Landslides and slope failures in Scotland: a review. Scott Geogr Mag 102(3):134–150. doi:10.1080/00369228618736667

    Article  Google Scholar 

  • Bardou E (2011) Influence of the connectivity with permafrost on the debris-flow triggering in high-alpine environment. Ital J Eng Geol 11(3):13–21. doi:10.4408/IJEGE.2011-03.B-002

    Google Scholar 

  • Barrell DJA, Sc Cox, Greene S (2009) Otago alluvial fans project: supplementary maps and information on fans in selected areas of Otago. GNS Science Consultancy Report GNS Science, Lower Hutt

    Google Scholar 

  • Barringer JRF, Pairman D, McNeill SJ (2002) Development of a high-resolution digital elevation model for New Zealand. Landcare Research Contract Report LC0102/170, prepared for Foundation for Research, Science & Technology. Landcare Research, Lincoln

    Google Scholar 

  • Berti M, Genevois R, Simoni A, Tecca PR (1999) Field observations of a debris flow event in the Dolomites. Geomorphology 29(3–4):265–274. doi:10.1016/s0169-555x(99)00018-5

    Article  Google Scholar 

  • Beschta RL (1983) Channel changes following storm-induced hillslope erosion in the upper Kowai Basin, Torlesse Range, New Zealand. J Hydrol NZ 22(2):93–111

    Google Scholar 

  • Beylich AA, Sandberg O (2005) Geomorphic effects of the extreme rainfall event of 20–21 July, 2004 in the latnjavagge catchment, Northern Swedish Lapland. Geografiska Annaler: Ser A, Phys Geogr 87(3):409–419. doi:10.1111/j.0435-3676.2005.00267.x

    Article  Google Scholar 

  • Blair T, McPherson J (2009) Processes and forms of alluvial fans. In: Parsons A, Abrahams A (eds) Geomorphology of desert environments. Springer Science + Business Media B.V., pp 413–467. doi:10.1007/978-1-4020-5719-9_14

    Google Scholar 

  • Blijenberg H (1998) Rolling stones? triggering and frequency of hillslope debris flows in the Bachelard Valley, southern French Alps, vol 246. Faculteit Ruimtelijke Wetenschappen Universiteit Utrecht, Utrecht, Nederlandse Geografische Studies

    Google Scholar 

  • Bommer C, Fitze P, Schneider H (2012) Thaw-consolidation effects on the stability of Alpine Talus Slopes in permafrost. Permafrost Periglac Process 23(4):267–276. doi:10.1002/ppp.1751

    Article  Google Scholar 

  • Bovis MJ (1993) Hillslope geomorphology and geotechnique. Prog Phys Geogr 17(2):173–189. doi:10.1177/030913339301700205

    Article  Google Scholar 

  • Bovis MJ, Jakob M (1999) The role of debris supply conditions in predicting debris flow activity. Earth Surf Proc Land 24(11):1039–1054. doi:10.1002/(SICI)1096-9837(199910)24:11<1039:AID-ESP29>3.0.CO;2-U

    Article  Google Scholar 

  • Bowman E, Davies T (2008) The recognition and identification of debris flow hazards for proposed development sites in New Zealand. In: Chin C (ed) 18th NZGS Geotechnical symposium on soil-structure interaction, Auckland

    Google Scholar 

  • Brayshaw D, Hassan MA (2009) Debris flow initiation and sediment recharge in gullies. Geomorphology 109(3–4):122–131. doi:10.1016/j.geomorph.2009.02.021

    Article  Google Scholar 

  • Brazier V, Kirkbride MP, Owens IF (1998) The relationship between climate and rock glacier distribution in the Ben Ohau Range, New Zealand. Geografiska Annaler: Ser A, Phys Geogr 80A(3–4):193–207. doi:10.1111/j.0435-3676.1998.00037.x

    Article  Google Scholar 

  • Brook MS, Kirkbride MP, Brock BW (2008) Temporal constraints on glacial valley cross-profile evolution: two thumb range, central Southern Alps. New Zealand. Geomorphology 97(1–2):24–34. doi:10.1016/j.geomorph.2007.02.036

    Article  Google Scholar 

  • Brunsden D (1979) Mass movements. In: Embleton C, Thornes J (eds) Process in geomorphology. Arnold, London, pp 131–186

    Google Scholar 

  • Burrows CJ (1980) Radiocarbon dates for post-Otiran glacial activity in the Mount Cook region, New Zealand. NZ J Geol Geophys 23(2):239–248. doi:10.1080/00288306.1980.10424209

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows Geografiska Annaler: Series A. Phys Geogr 62(1–2):23–27. doi:10.2307/520449

    Google Scholar 

  • Carrara A, Crosta G, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94(3–4):353–378. doi:10.1016/j.geomorph.2006.10.033

    Article  Google Scholar 

  • Carrivick J, Manville V, Cronin S (2009) A fluid dynamics approach to modelling the 18th March 2007 lahar at Mt. Ruapehu, New Zealand. Bull Volcanol 71 (2):153–169. doi:10.1007/s00445-008-0213-2

    Google Scholar 

  • Carson MA, Kirby M (1972) Hillslope form and process. Cambridge University Press, Cambridge

    Google Scholar 

  • Chen J-C (2011) Variability of impact of earthquake on debris-flow triggering conditions: case study of Chen-Yu-Lan watershed. Taiwan. Environmental Earth Sciences 64(7):1787–1794. doi:10.1007/s12665-011-0981-4

    Article  Google Scholar 

  • Chiarle M, Iannotti S, Mortara G, Deline P (2007) Recent debris flow occurrences associated with glaciers in the Alps. Global Planet Change 56(1–2):123–136. doi:10.1016/j.gloplacha.2006.07.003

    Article  Google Scholar 

  • Clow D, Schrott L, Webb R, Campbell D, Torizzo A, Dornblaser M (2003) Ground water occurrence and contributions to streamflow in an alpine catchment, colorado front range. Ground Water 41(7):937–950. doi:10.1111/j.1745-6584.2003.tb02436.x

    Article  Google Scholar 

  • Columbus J, Sirguey P, Tenzer R (2011a) 15 m DEM for New Zealand. University of Otago, National School of Surveying, New Zealand, www.koordinates.com. Accessed 05 Jan 2014

  • Columbus J, Sirguey P, Tenzer R (2011b) A free, fully assessed 15-m DEM for New Zealand. Survey Quarterly 66:16–19

    Google Scholar 

  • Corominas J, Remondo J, Farias P, Estevao M, Zézere J, Díaz deTerán J, Dikau R, Schrott L, Moya J, González A (1996) Debris flow. In: Dikau R, Brunsden D, Schrott L, Ibsen M-L (eds) Landslide recognition. Wiley, Chichester, pp 161–181

    Google Scholar 

  • Costa JE (1984) Physical geomorphology of debris flows. In: Costa JE, Fleisher PJ (eds) Developments an applications of geomorphology. Springer, Berlin, pp 268–317

    Chapter  Google Scholar 

  • Coussot P, Meunier M (1996) Recognition, classification and mechanical description of debris flows. Earth Sci Rev 40(3–4):209–227. doi:10.1016/0012-8252(95)00065-8

    Article  Google Scholar 

  • Coutard J-P, Francou B (1989) Rock temperature measurements in two alpine environments: implications for frost shattering. Arct Alp Res 21(4):399–416

    Article  Google Scholar 

  • Cox SC, Barrell DJA (2007) Geology of the Aoraki area, 1: 250 000. Geological Map 15. GNS Science, Lower Hutt

    Google Scholar 

  • Cronin SJ, Hodgson KA, Neall VE, Palmer AS, Lecointre JA (1997) 1995 Ruapehu lahars in relation to the late Holocene lahars of Whangaehu River, New Zealand. NZ J Geol Geophys 40(4):507–520. doi:10.1080/00288306.1997.9514780

    Article  Google Scholar 

  • Crozier M (1997) The climate-landslide couple: a Southern Hemisphere perspective. Paläoklimaforschung Paleoclimate Research 19:333–354

    Google Scholar 

  • Crozier MJ (1999) Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surf Proc Land 24(9):825–833. doi:10.1002/(sici)1096-9837(199908)24:9<825:aid-esp14>3.0.co;2-m

    Article  Google Scholar 

  • Crozier MJ (2010) Deciphering the effect of climate change on landslide activity: A review. Geomorphology 124(3–4):260–267. doi:10.1016/j.geomorph.2010.04.009

    Article  Google Scholar 

  • Crozier MJ, Preston NJ (1999) Modelling changes in terrain resistance as a component of landform evolution in unstable hill country. In: Hergarten S, Neugebauer H (eds) Process modelling and landform evolution, vol 78. Lecture notes in earth sciences. Springer Berlin Heidelberg, pp 267–284. doi:10.1007/BFb0009730

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation, Special Report 247. Transportation Research Board, US National Research Council, Washington, DC, pp 36–75

    Google Scholar 

  • Davies T, McSaveney M (2008) Principles of sustainable development on fans. J Hydrol NZ 47(1):43–65

    Google Scholar 

  • De Scally FA, Owens IF (2004) Morphometric controls and geomorphic responses on fans in the Southern Alps, New Zealand. Earth Surf Proc Land 29(3):311–322. doi:10.1002/esp.1022

    Article  Google Scholar 

  • De Scally FA, Owens IF, Louis J (2010) Controls on fan depositional processes in the schist ranges of the Southern Alps, New Zealand, and implications for debris-flow hazard assessment. Geomorphology 122(1–2):99–116. doi:10.1016/j.geomorph.2010.06.002

    Article  Google Scholar 

  • Decaulne A, SÆmundsson Þ, Petursson O (2005) Debris flow triggered by Rapid Snowmelt: a case study in the Gleidarhjalli Area, Northwestern Iceland. Geografiska Annaler: Ser A, Phys Geogr 87(4):487–500. doi:10.1111/j.0435-3676.2005.00273.x

    Google Scholar 

  • Del Longo M, Finzi E, Galgaro A, Godio A, Luchetta A, Pellegrini GB, Zambiano R (2001) Responses of the Val d’Arcia small Dolomitic Glacier (Mount Pelmo, Eastern Alps) to recent climatic changes. Geomorphological and geophysical study. Geografia Fisica e Dinamica Quaternaria 24:43–55

    Google Scholar 

  • DiBiase RA, Heimsath AM, Whipple KX (2012) Hillslope response to tectonic forcing in threshold landscapes. Earth Surf Proc Land 37(8):855–865. doi:10.1002/esp.3205

    Article  Google Scholar 

  • ESRI (2009a) ArcGIS 9.3.1 for Desktop. Environmental Systems Research Institute, Redlands, CA

    Google Scholar 

  • ESRI (2009b) ArcGIS Desktop 9.3 Help. www.webhelp.esri.com/arcgisdesktop/9.3. Accessed 06/01/2013

  • García-Ruiz JM, Arnáez J, Gómez-Villar A, Ortigosa L, Lana-Renault N (2013) Fire-related debris flows in the Iberian Range. Spain. Geomorphology 196:221–230. doi:10.1016/j.geomorph.2012.03.032

    Article  Google Scholar 

  • Gellatly AF, Chinn TJH, Röthlisberger F (1988) Holocene glacier variations in New Zealand: a review. Quatern Sci Rev 7(2):227–242. doi:10.1016/0277-3791(88)90008-X

    Article  Google Scholar 

  • Glade T (1997) The temporal and spatial occurrence of rainstorm-triggered landslide events in New Zealand—an investigation into the frequency, magnitude and characteristics of landslide events and their relationship with climatic and terrain characteristics. Unpublished Ph.D. thesis, Victoria University of Wellington, Wellington

    Google Scholar 

  • Glade T (2000) Modeling landslide-triggering rainfalls in different regions in New Zealand: The soil water status model. Zeitschrift für Geomorphologie 122:63–84

    Google Scholar 

  • Glade T (2003) Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena 51(3–4):297–314. doi:10.1016/s0341-8162(02)00170-4

    Article  Google Scholar 

  • Glade T (2005) Linking debris-flow hazard assessments with geomorphology. Geomorphology 66(1–4):189–213. doi:10.1016/j.geomorph.2004.09.023

    Article  Google Scholar 

  • GNS (2004) New Zealand Active Fault Database. http://data.gns.cri.nz/af/. Accessed 29/02/2016

  • Godt JW, Coe JA (2007) Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range. Colorado. Geomorphology 84(1–2):80–97. doi:10.1016/j.geomorph.2006.07.009

    Article  Google Scholar 

  • Goodwin C, Tarboton D (2003) Morphometric properties. Encyclopedia of Geomorphology, vol 1. Routledge, London

    Google Scholar 

  • Greenwood J, Norris J, Wint J (2004) Assessing the contribution of vegetation to slope stability. Proc Inst Civil Eng-Geotech Eng 157(4):199–207

    Article  Google Scholar 

  • Griffiths PG, Webb RH, Melis TS (2004) Frequency and initiation of debris flows in Grand Canyon, Arizona. J Geophys Res 109 (F04002). doi:10.1029/2003jf000077

  • Gruber S, Peckham S (2009) Land-surface parameters and objects in hydrology. In: Tomislav H, Hannes IR (eds) Geomorphometry—concepts, software, applications, vol 33. Developments in soil science. Elsevier, pp 171–194. doi:10.1016/s0166-2481(08)00007-x

    Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98(3):239–267. doi:10.1007/s00703-007-0262-7

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark C (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17. doi:10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Haeberli W, Rickenmann R, Zimmermann M, Rosli U (1991) Murgänge. In: Ursachenanalyse der Hochwasser 1987—Ergebnisse der Untersuchungen, vol 4. Mitteilungen des Bundesamtes für Wasserwirtschaft. Bern, pp 77–88

    Google Scholar 

  • Hales TC, Roering JJ (2005) Climate-controlled variations in scree production, Southern Alps. New Zealand. Geology 33(9):701–704. doi:10.1130/G21528.1

    Google Scholar 

  • Hales TC, Roering JJ (2007) Climatic controls on frost cracking and implications for the evolution of bedrock landscapes. J Geophys Res 112 (F02033). doi:10.1029/2006jf000616

  • Hall K, Thorn C (2011) The historical legacy of spatial scales in freeze-thaw weathering: misrepresentation and resulting misdirection. Geomorphology 130(1–2):83–90. doi:10.1016/j.geomorph.2010.10.003

    Article  Google Scholar 

  • Hancox GT, Perrin ND, Dellow GD (1997) Earthquake-induced landsliding in New Zealand and implications for MM intensity and seismic hazard assessment. GNS Science Consultancy Report, GNS Science, Lower Hutt

    Google Scholar 

  • Hancox GT, Cox S, Turnbull I, Crozier M (2003) Reconnaissance studies of landslides and other ground damage caused by the Mw7. 2 Fiordland earthquake of 22 August 2003. GNS Science Report. GNS Science, Lower Hutt

    Google Scholar 

  • Hancox GT, Dellow GD, McSaveney M, Scott MB, Villamor P (2004) Reconnaissance studies of landslides caused by the ML 5.4 Lake Rotoehu earthquake and swarm of July 2004. GNS Science Report. GNS Science, Lower Hutt

    Google Scholar 

  • Hayward JA (1980) Hydrology and stream sediment from Torlesse Stream catchment, vol 17. Tussock Grasslands and Mountain Lands Insitute—Special Publication, Lincoln University, Lincoln

    Google Scholar 

  • Herman F, Braun J (2006) Fluvial response to horizontal shortening and glaciations: a study in the Southern Alps of New Zealand. J Geophys Res 111 (F01008). doi:10.1029/2004jf000248

  • Hodgson KA, Manville VR (1999) Sedimentology and flow behavior of a rain-triggered lahar, Mangatoetoenui Stream, Ruapehu volcano, New Zealand. Geol Soc Am Bull 111(5):743–754. doi:10.1130/0016-7606(1999)111<0743:Safboa>2.3.Co;2

    Article  Google Scholar 

  • Holzer TL, Hanks TC, Youd TL (1989) Dynamics of liquefaction during the 1987 Superstition Hills, California. Earthquake. Science 244(4900):56–59. doi:10.1126/science.244.4900.56

    Google Scholar 

  • Hovius N, Stark CP, Allen PA (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology 25(3):231–234. doi:10.1130/0091-7613(1997)025<0231:sffamb>2.3.co;2

    Article  Google Scholar 

  • Hübl J, Kienholz H, Loipersberger A (2002) DOMODIS—Documentation of Mountain Disasters. Schriftenreihe 1. Handbuch 1. International Research Society INTERPRAEVENT, Klagenfurt

    Google Scholar 

  • Hufschmidt G (2008) The evolution of risk from landslides: concepts and applications for communities in New Zealand. Unpublished Ph.D. thesis, Victoria University of Wellington, Wellington

    Google Scholar 

  • Hungr O (2000) Analysis of debris flow surges using the theory of uniformly progressive flow. Earth Surf Proc Land 25(5):483–495. doi:10.1002/(sici)1096-9837(200005)25:5<483:aid-esp76>3.0.co;2-z

    Article  Google Scholar 

  • Hungr O (2005) Classification and terminology. In: Jakob M, Hungr O (eds) Debris-flow Hazards and related phenomena. Springer, Berlin-Heidelberg, pp 9–23

    Chapter  Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238

    Article  Google Scholar 

  • Hungr O, McDougall S, Bovis M (2005) Entrainment of material by debris flows. In: Jakob M, Hungr O (eds) Debris-flow Hazards and related phenomena. Springer, Berlin-Heidelberg, pp 135–158

    Chapter  Google Scholar 

  • Hutchinson JN General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Bonnard C (ed) Fifth international symposium on landslides, Lausanne, 1988. pp 3–36

    Google Scholar 

  • Imaizumi F, Sidle RC, Kamei R (2008) Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surf Proc Land 33(6):827–840. doi:10.1002/esp.1574

    Article  Google Scholar 

  • Innes JL (1982) Debris flow activity in the Scottish highlands Unpublished Ph.D. thesis, University of Cambridge, Cambridge

    Google Scholar 

  • Innes JL (1983) Debris flows. Prog Phys Geogr 7:469–501. doi:10.1177/030913338300700401

    Article  Google Scholar 

  • ITT Cooperation (2009) ENVI 4.7 software. White Plains, NY

    Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296. doi:10.1029/97rg00426

    Article  Google Scholar 

  • Iverson RM (2003a) Debris flow. In: Goudie A (ed) Encyclopedia of geomorphology. Routledge, London, p 225

    Google Scholar 

  • Iverson RM (2003b) The debris-flow rheology myth. In: Rickenmann D, Chen C (eds) Debris-flow hazard mitigation: mechanics, prediction, and assessment. Millpress, Rotterdam, pp 303–314

    Google Scholar 

  • Iverson RM (2005) Debris-flow mechanics. In: Jakob M, Hungr O (eds) Debris-flow Hazards and related phenomena. Springer Praxis Books. Springer, Berlin-Heidelberg, pp 105–134. doi:10.1007/3-540-27129-5_6

  • Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides. Annu Rev Earth Planet Sci 25:85–138. doi:10.1146/annurev.earth.25.1.85

    Article  Google Scholar 

  • Jakob M (2003) Weathering-limited and transport-limited. In: Goudie A (ed) Encyclopedia of geomorphology, vol 2. Routledge, London, pp 1114–1115

    Google Scholar 

  • Jakob M, Hungr O (eds) (2005) Debris-flow hazards and related phenomena. Springer, Berlin-Heidelberg

    Google Scholar 

  • Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver. British Columbia. Geomorphology 54(3–4):137–156. doi:10.1016/s0169-555x(02)00339-2

    Article  Google Scholar 

  • Jakob M, Bovis M, Oden M (2005) The significance of channel recharge rates for estimating debris-flow magnitude and frequency. Earth Surf Proc Land 30(6):755–766. doi:10.1002/esp.1188

    Article  Google Scholar 

  • Johnson AM, Rodine JR (1984) Debris flows. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, Chichester, pp 257–361

    Google Scholar 

  • Jomelli V, Brunstein D, Chochillon C, Pech P (2003) Hillslope debris-flow frequency since the beginning of the 20th century in the Massif des Ecrins (French Alps). In: Rickenmann D, Chen C (eds) Debris-flow hazard mitigation: mechanics, prediction, and assessment. Millpress, Rotterdam, pp 127–137

    Google Scholar 

  • Jomelli V, Pech P, Chochillon C, Brunstein D (2004) Geomorphic variations of debris flows and recent climatic change in the French Alps. Climatic Change 64(1):77–102. doi:10.1023/B:CLIM.0000024700.35154.44

    Article  Google Scholar 

  • Jomelli V, Brunstein D, Grancher D, Pech P (2007) Is the response of hillslope debris flows to recent climate change univocal? A case study in the Massif des Ecrins (French Alps). Clim Change 85(1–2):119–137. doi:10.1007/s10584-006-9209-0

    Article  Google Scholar 

  • Kaitna R, Schneuwly-Bollschweiler M, Sausgruber T, Moser M, Stoffel M, Rudolf-Miklau F (2013) Susceptibility and triggers for debris flows: emergence, loading, release and entrainment. In: Schneuwly-Bollschweiler M, Stoffel M, Rudolf-Miklau F (eds) Dating torrential processes on fans and cones, vol 47. Advances in global change research. Springer Netherlands, pp 33–49. doi:10.1007/978-94-007-4336-6_3

    Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. Geological Society of America Bulletin 95(4):406–421. doi:10.1130/0016-7606(1984)95<406:lcbe>2.0.co;2

    Article  Google Scholar 

  • Kienholz H (1995) Gefahrenbeurteilung und –bewertung—auf dem Weg zu einem Gesamtkonzept. Schweizer Zeitschrift für Forstwesen 146(9):701–725

    Google Scholar 

  • Kirkbride M, Matthews D (1997) The role of fluvial and glacial erosion in landscape evolution: The Ben Ohau Range, New Zealand. Earth Surf Process Land 22(3):317–327. doi:10.1002/(Sici)1096-9837(199703)22:3<317:Aid-Esp760>3.0.Co;2-I

    Article  Google Scholar 

  • Kleinhans MG, Markies H, de Vet SJ, in ‘t Veld AC, Postema FN (2011) Static and dynamic angles of repose in loose granular materials under reduced gravity. J Geophys Res 116(E11004). doi:10.1029/2011je003865

  • Kneisel C (2010) The nature and dynamics of frozen ground in alpine and subarctic periglacial environments. The Holocene 20(3):423–445. doi:10.1177/0959683609353432

    Article  Google Scholar 

  • Korup O (2005) Distribution of landslides in southwest New Zealand. Landslides 2(1):43–51. doi:10.1007/s10346-004-0042-0

    Article  Google Scholar 

  • Koscielny M, Cojean R, Thenevin I (2009) Debris flow hazards due to land use changes above source areas in torrent catchments: case study of Les Arcs (Savoie, France). WIT Trans Ecol Environ 124:161–170. doi:10.2495/rm090151

    Article  Google Scholar 

  • Larsen IJ, Pederson JL, Schmidt JC (2006) Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument. Geomorphology 81(1–2):114–127. doi:10.1016/j.geomorph.2006.04.002

    Article  Google Scholar 

  • Larsson S (1982) Geomorphological effects on the slopes of Longyear Valley, Spitsbergen, after a heavy rainstorm in July 1972. Geografiska Annaler: Ser A, Phys Geogr 64(3/4):105–125

    Article  Google Scholar 

  • Lewin J, Warburton J (1994) Debris flows in an Alpine environment. Geography 79(2):98–107

    Google Scholar 

  • Lewkowicz AG, Harris C (2005) Morphology and geotechnique of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada. Geomorphology 69(1–4):275–297. doi:10.1016/j.geomorph.2005.01.011

    Article  Google Scholar 

  • Lin J-C, Petley D, Jen C-H, Koh A, Hsu M-L (2006) Slope movements in a dynamic environment—a case study of Tachia River, Central Taiwan. Q Int 147(1):103–112. doi:10.1016/j.quaint.2005.09.011

    Article  Google Scholar 

  • Lindsay J (2010) Whitebox geospatial analysis tools tutorial series, tutorial 3: streams and watershed extraction. The University of Guelph, Guelph, The Centre for Hydrogeomatics

    Google Scholar 

  • Lorente A, García-Ruiz JM, Beguería S, Arnáez J (2002) Factors explaining the spatial distribution of hillslope debris flows—a case study in the flysch sector of the Central Spanish Pyrenees. Mountain Res Dev 22(1):32–39. doi:10.1659/0276-4741(2002)022[0032:fetsdo]2.0.co;2

    Article  Google Scholar 

  • Loye A, Jaboyedoff M, Pedrazzini A (2009) Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Nat Hazards Earth Syst Sci 9(5):1643–1653. doi:10.5194/nhess-9-1643-2009

    Article  Google Scholar 

  • Marchi L, Arattano M, Deganutti AM (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46(1–2):1–17. doi:10.1016/S0169-555x(01)00162-3

    Article  Google Scholar 

  • Matsuoka N, Murton J (2008) Frost weathering: recent advances and future directions. Permafrost Periglac Process 19(2):195–210. doi:10.1002/ppp.620

    Article  Google Scholar 

  • McGreevy JP (1981) Some perspectives on frost shattering. Prog Phys Geogr 5(1):56–75. doi:10.1177/030913338100500103

    Article  Google Scholar 

  • McRoberts EC, Morgenstern NR (1974) The stability of thawing slopes. Can Geotech J 11(4):447–469. doi:10.1139/t74-052

    Article  Google Scholar 

  • McSaveney MJ, Beetham RD (2006) The potential for debris-flows from Karaka stream at Thames, Coromandel. GNS Science Consultancy Report GNS Science, Lower Hutt

    Google Scholar 

  • McSaveney MJ, Davies TRH (2005) Engineering for debris flows in New Zealand. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin-Heidelberg, pp 635–658

    Chapter  Google Scholar 

  • McSaveney M, Davis T, Gough J (1995) Natural hazard assessment for Mt Cook/Aoraki Village and environs. Report 49500D.11 prepared for Department of Conservation and Mount Cook Village Development Steering Committee. GNS Science, Lower Hutt

    Google Scholar 

  • McSaveney MJ, Beetham RD, Leonard GS (2005) The 18 May 2005 debris flow disaster at Matata: causes and mitigation suggestions. GNS Science Consultancy Report, GNS Science, Lower Hutt

    Google Scholar 

  • Mikoš M, Fazarinc R, Ribičič M (2006) Sediment production and delivery from recent large landslides and earthquake-induced rock falls in the Upper Soča River Valley, Slovenia. Eng Geol 86(2–3):198–210. doi:10.1016/j.enggeo.2006.02.015

    Article  Google Scholar 

  • Milne FD, Davies MCR (2007) Control of soil properties on the Scottish debris flow geohazard and implications of projected climate change. In: McInnes R, Jakeways J, Fairbank H, Mathie E (eds) Landslides and climate change: challenges and solutions. Taylor & Francis Group, London, pp 121–127

    Google Scholar 

  • Murton JB, Peterson R, Ozouf J-C (2006) Bedrock Fracture by ice segregation in cold regions. Science 314(5802):1127–1129. doi:10.1126/science.1132127

    Article  Google Scholar 

  • Nater P, Arenson L, Springman S (2008) Choosing geotechnical parameters for slope stability assessments in alpine permafrost soils. In: Kane DL, Hinkel KM (eds) Ninth International conference on permafrost, Fairbanks, pp 1261–1266

    Google Scholar 

  • Neall VE (2003) Lahar. In: Goudie A (ed) Encyclopedia of geomorphology. Routledge, London, pp 597–599

    Google Scholar 

  • NZ metservice (1985) Climatic map series. Part 6: annual rainfall (digitised version including expert interpolation), vol 175. New Zealand Meteorological Service Miscellaneous Publication. New Zealand Meteorological Service, Wellington

    Google Scholar 

  • Page MJ, Trustrum NA, Dymond JR (1994) Sediment budget to assess the geomorphic effect of a cyclonic storm, New Zealand. Geomorphology 9(3):169–188. doi:10.1016/0169-555x(94)90061-2

    Article  Google Scholar 

  • Paterson BR (1996) Slope instability along State Highway 73 through Arthur’s pass, South Island, New Zealand. New Zealand J Geol Geophys 39(3):339–351. doi:10.1080/00288306.1996.9514718

    Article  Google Scholar 

  • Pellerin D (2001) Rates of revegetation of gullies in coastal British Columbia: implications for sediment production. Unpublished M.Sc. thesis, University of British Columbia, Vancouver

    Google Scholar 

  • Phillips CJ, Davies TRH (1991) Determining rheological parameters of debris flow material. Geomorphology 4(2):101–110. doi:10.1016/0169-555X(91)90022-3

    Article  Google Scholar 

  • Pierson TC (1980a) Debris flows: an important process in high country gully erosion. Tussock Grasslands Mountain lands Institute Rev 39:3–14

    Google Scholar 

  • Pierson TC (1980b) Erosion and deposition by debris flows at Mt Thomas, North Canterbury, New Zealand. Earth Surf Process 5:22–247. doi:10.1002/esp.3760050302

    Article  Google Scholar 

  • Pierson TC (1981) Dominant particle support mechanisms in debris flows at Mt Thomas, New Zealand, and implications for flow mobility. Sedimentology 28(1):49–60. doi:10.1111/j.1365-3091.1981.tb01662.x

    Article  Google Scholar 

  • Pierson TC (1986) Flow behavior of channelized debris flows, Mount St. Helens, Washington. In: Abrahams AD (ed) Hillslope processes. Allen and Unwin, Boston, pp 269–296

    Google Scholar 

  • Pierson TC, Janda RJ, Thouret J-C, Borrero CA (1990) Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J Volcanology Geothermal Res 41(1–4):17–66. doi:10.1016/0377-0273(90)90082-q

    Article  Google Scholar 

  • Preston N (1996) Spatial and temporal changes in terrain resistance to shallow translational regolith landsliding. Unpublsihed M.Sc. Thesis, Victoria University of Wellington, Wellington

    Google Scholar 

  • Rapp A (1960) Recent development of mountain slopes in Kaerkevagge and surroundings, Northern Scandinavia. Geografiska Annaler 42(2/3):65–200

    Article  Google Scholar 

  • Rattenbury MS, Townsend DB, Johnston MR (2006) Geology of the Kaikoura area, 1: 250 000. Geological Map 13. GNS Science, Lower Hutt

    Google Scholar 

  • Rebetez M, Lugon R, Baeriswyl PA (1997) Climatic change and debris flows in high mountain regions: the case study of the Ritigraben torrent (Swiss Alps). Climatic Change 36(3):371–389. doi:10.1023/A:1005356130392

    Article  Google Scholar 

  • Reid LM, Page MJ (2003) Magnitude and frequency of landsliding in a large New Zealand catchment. Geomorphology 49(1–2):71–88. doi:10.1016/s0169-555x(02)00164-2

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19(1):47–77. doi:10.1023/A:1008064220727

    Article  Google Scholar 

  • Rickenmann D, Zimmermann M (1993) The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology 8(2–3):175–189. doi:10.1016/0169-555x(93)90036-2

    Article  Google Scholar 

  • Rieger D (1999) Bewertung der naturräumlichen Rahmenbedingungen für die Entstehung von Hangmuren—Möglichkeiten zur Modellierung des Murpotentials, vol A 51. Münchener Geographische Abhandlungen. Institut für Geographie der Universität München, München

    Google Scholar 

  • Riley KL, Bendick R, Hyde KD, Gabet EJ (2013) Frequency–magnitude distribution of debris flows compiled from global data, and comparison with post-fire debris flows in the western U.S. Geomorphology 191:118–128. doi:10.1016/j.geomorph.2013.03.008

    Article  Google Scholar 

  • Rist A (2007) Hydrothermal processes within the active layer above alpine permafrost in steep scree slopes and their influence on slope stability. Unpublished Ph.D. Thesis, University of Zurich, Zurich

    Google Scholar 

  • Sappington JM, Longshore KM, Thompson DB (2007) Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. J Wildlife Manage 71(5):1419–1426. doi:10.2193/2005-723

    Article  Google Scholar 

  • Sass O (2005) Spatial patterns of rockfall intensity in the northern Alps. Zeitschrift für Geomorphologie, Suppl 138:51–65

    Google Scholar 

  • Sass O, Heel M, Leistner I, Stöger F, Wetzel K-F, Friedmann A (2012) Disturbance, geomorphic processes and recovery of wildfire slopes in North Tyrol. Earth Surf Process Land 37(8):883–894. doi:10.1002/esp.3221

    Article  Google Scholar 

  • Sassa K, Wang CH (2005) Mechanism of landslide-triggered debris flows: liquefaction phenomena due to the undrained loading of torrent deposits. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin-Heidelberg, pp 81–104

    Chapter  Google Scholar 

  • Sattler K (2008) Murgangaktivität und Permafrostverbreitung in einem periglazialen Hochgebirgsraum—eine Fallstudie im Schnalstal, Südtirol. Unpublished M.Sc. thesis, University of Vienna, Vienna

    Google Scholar 

  • Schneuwly-Bollschweiler M, Stoffel M (2012) Hydrometeorological triggers of periglacial debris flows in the Zermatt valley (Switzerland) since 1864. J Geophys Res 117:F02033. doi:10.1029/2011jf002262

    Article  Google Scholar 

  • Selby MJ (1976) Slope erosion due to extreme rainfall: a case study from New Zealand. Geografiska Annaler: Ser A, Phys Geogr 58(3):131–138. doi:10.2307/520925

    Article  Google Scholar 

  • Selby MJ (1993) Hillslope materials and processes, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Sharp RP, Nobles L (1953) Mudflow of 1941 at wrightwood, Southern California. Geological Soc Am Bulletin 64(5):547–560. doi:10.1130/0016-7606(1953)64[547:moawsc]2.0.co;2

    Article  Google Scholar 

  • Sidle RC (2005) Influence of forest harvesting activities on debris avalanches and flows. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin-Heidelberg, pp 387–409

    Chapter  Google Scholar 

  • Sidle RC, Ochiai H (2006) Landslides: processes, prediction, and land use, vol 18. American Geophysical Union, Washington, DC, Water Resources Monograph. doi:10.1029/wm018

    Book  Google Scholar 

  • Skermer N, Rawlings G, Hurley A (2002) Debris-flow defence at Aoraki Mount Cook Village, New Zealand. Q J Eng Geol Hydrogeol 35:19–24. doi:10.1144/qjegh.35.1.19

    Article  Google Scholar 

  • Stiny J (1931) Die geologischen Grundlagen der Verbauung der Geschiebeherde in Gewässern. Springer, Wien

    Book  Google Scholar 

  • Stoffel M, Bollschweiler M, Hassler G-R (2006) Differentiating past events on a cone influenced by debris-flow and snow avalanche activity—a dendrogeomorphological approach. Earth Surf Process Land 31(11):1424–1437. doi:10.1002/esp.1363

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38(6):913–920

    Article  Google Scholar 

  • Tait A, Henderson R, Turner R, Zheng X (2006) Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface. Int J Climatol 26(14):2097–2115. doi:10.1002/joc.1350

    Article  Google Scholar 

  • Takahashi T (1980) Debris flow on a prismatic open channel. J Hydraul Div (ASCE) 106(3):381–396

    Google Scholar 

  • Takahashi T (1981) Estimation of potential debris flows and their hazardous zones: Soft counter measures for a disaster. J Nat Disaster Sci 3(1):57–89

    Google Scholar 

  • Takahashi T (2007) Debris flow—mechanics, prediction and countermeasures. Taylor & Francis, London

    Book  Google Scholar 

  • Terralink (2004–2010) Colour orthophotograph mosaic. Terralink International Ltd, Wellington. Index file of individual images available: https://data.linz.govt.nz/layer/1893. Accessed 18/11/2015

  • Thurston LL (2009) An integrated approach to alluvial fan research. Unpublished B.Sc. thesis, Unverrsity of Otago, Dunedin

    Google Scholar 

  • Tognacca C (1999) Beitrag zur Untersuchung der Entstehungsmechanismen von Murgängen. Unpublished Ph.D. Thesis, ETH Zuerich, Zuerich

    Google Scholar 

  • Turnbull IM (2000) Geology of the Wakatipu area, 1: 250 000. Geological Map 18. GNS Science, Lower Hutt

    Google Scholar 

  • Turnbull IM, Thomson R, Read SAL (1975) Shotover river sediment source survey—geological report. Unpublished Engineering Report EG227. GNS Science, Lower Hutt

    Google Scholar 

  • Van Dissen R, Yeats RS (1991) Hope fault, Jordan thrust, and uplift of the Seaward Kaikoura Range, New Zealand. Geology 19(4):393–396. doi:10.1130/0091-7613(1991)019<0393:hfjtau>2.3.co;2

    Article  Google Scholar 

  • Van Steijn H (1996) Debris-flow magnitude-frequency relationships for mountainous regions of Central and Northwest Europe. Geomorphology 15(3–4):259–273. doi:10.1016/0169-555X(95)00074-F

    Article  Google Scholar 

  • Vanmaercke M, Kettner AJ, Van Den Eeckhaut M, Poesen J, Mamaliga A, Verstraeten G, Rãdoane M, Obreja F, Upton P, Syvitski JPM, Govers G (2014) Moderate seismic activity affects contemporary sediment yields. Prog Phys Geogr. doi:10.1177/0309133313516160

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, vol Special Report 176. Transportation Research Board, Special Report 176. National Academy of Science, Washington, DC, pp 11–33

    Google Scholar 

  • Welcker C (2011) Bulking debris flow initiation and impacts. Unpublished Ph.D. thesis, University of Idaho, Moscow

    Google Scholar 

  • Wellman HW (1979) An uplift map for the South Island of New Zealand, and a model for the uplift of the Southern Alps. R Soc New Zealand Bulletin 18:13–20

    Google Scholar 

  • Welsh A, Davies T (2011) Identification of alluvial fans susceptible to debris-flow hazards. Landslides 8(2):183–194. doi:10.1007/s10346-010-0238-4

    Article  Google Scholar 

  • Whitehouse IE (1982) Erosion on Sebastopol, Mt Cook, New Zealand, in the last 85 years. New Zealand Geographer 38:77–80. doi:10.1111/j.1745-7939.1982.tb00996.x

    Article  Google Scholar 

  • Whitehouse IE (1988) Geomorphology of the central Southern Alps, New Zealand: the interaction of plate collision and atmospheric circulation. Zeitschrift für Geomorphologie Supplement 69:105–116

    Google Scholar 

  • Whitehouse IE, McSaveney M (1990) Geomorphic appraisals for development on two steep, active alluvial fans, Mt Cook, New Zealand. In: Rachocki A, Church M (eds) Alluvial fans: a field approach. Wiley, Chichester, pp 369–384

    Google Scholar 

  • Whitehouse IE, McSaveney MJ (1992) Assessment of geomorphic hazards along an Alpine Highway. New Zealand Geographer 48(1):27–32. doi:10.1111/j.1745-7939.1992.tb00378.x

    Article  Google Scholar 

  • Wieczorek G (1996) Landslide triggering mechanisms. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation Research Board, Special Report 247. US National Research Council, Washington, DC, pp 76–90

    Google Scholar 

  • Wieczorek GF, Glade T (2005) Climatic factors influencing occurrence of debris flows. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin-Heidelberg, pp 325–362

    Chapter  Google Scholar 

  • Williams GP, Guy HP Debris avalanches—a geomorphic hazard. In: 1st Annual geomorphology symposia series, Binghamton, 1971. pp 25–46

    Google Scholar 

  • Wilson JP, Gallant JC (2000) Terrain analysis: principles and applications. Wiley, New York

    Google Scholar 

  • Wondzell SM, King JG (2003) Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions. Forest Ecol Manage 178(1–2):75–87. doi:10.1016/s0378-1127(03)00054-9

    Article  Google Scholar 

  • Zimmermann M (1990) Periglaziale Murgänge. Mitteilungen der Versuchsanstalt fuer Wasserbau, Hydrologie und Glaziologie der ETH Zuerich 108:89–107

    Google Scholar 

  • Zimmermann M, Haeberli W (1992) Climatic change and debris flow activity in high-mountain areas. A case study in the Swiss Alps. Catena Supplement 22:59–72

    Google Scholar 

  • Zimmermann M, Mani P, Gamma P, Gsteiger P, Heiniger O, Hunziker G (1997a) Murganggefahr und Klimaänderung—ein GIS-basierter Ansatz. Schlussbericht NFP 31. vdf Hochschulverlag an der ETH Zürich, Zürich

    Google Scholar 

  • Zimmermann M, Mani P, Romang H (1997b) Magnitude-frequency aspects of alpine debris flows. Eclogae Geologicae Helvetiae 90(3):415–420

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Sattler .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sattler, K. (2016). Debris Flow Inventory. In: Periglacial Preconditioning of Debris Flows in the Southern Alps, New Zealand. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-35074-5_3

Download citation

Publish with us

Policies and ethics