Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 922))

Abstract

Detergents play a significant role in structural and functional characterisation of integral membrane proteins (IMPs). IMPs reside in the biological membranes and exhibit a great variation in their structural and physical properties. For in vitro biophysical studies, structural and functional analyses, IMPs need to be extracted from the membrane lipid bilayer environment in which they are found and purified to homogeneity while maintaining a folded and functionally active state. Detergents are capable of successfully solubilising and extracting the IMPs from the membrane bilayers. A number of detergents with varying structure and physicochemical properties are commercially available and can be applied for this purpose. Nevertheless, it is important to choose a detergent that is not only able to extract the membrane protein but also provide an optimal environment while retaining the correct structural and physical properties of the protein molecule. Choosing the best detergent for this task can be made possible by understanding the physical and chemical properties of the different detergents and their interaction with the IMPs. In addition, understanding the mechanism of membrane solubilisation and protein extraction along with crystallisation requirements, if crystallographic studies are going to be undertaken, can help in choosing the best detergent for the purpose. This chapter aims to present the fundamental properties of detergents and highlight information relevant to IMP crystallisation. The first section of the chapter reviews the physicochemical properties of detergents and parameters essential for predicting their behaviour in solution. The second section covers the interaction of detergents with the biologic membranes and proteins followed by their role in membrane protein crystallisation. The last section will briefly cover the types of detergent and their properties focusing on custom designed detergents for membrane protein studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anglin TC, Conboy JC (2008) Lateral pressure dependence of the phospholipid transmembrane diffusion rate in planar-supported lipid bilayers. Biophys J 95:186–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold T, Linke D (2007) Phase separation in the isolation and purification of membrane proteins. Biotechniques 43:427–434

    Article  CAS  PubMed  Google Scholar 

  • Arnold T, Linke D (2008) The use of detergents to purify membrane proteins. Curr Protoc Protein Sci. Chapter 4:Unit 4.8.1–4.8.30. doi:10.1002/0471140864.ps0408s53

  • Bae HE, Gotfryd K, Thomas J, Hussain H, Ehsan M et al (2015) Deoxycholate-based glycosides (DCGs) for membrane protein stabilisation. ChemBioChem 16:1454–1459

    Article  CAS  PubMed  Google Scholar 

  • Bill RM, Henderson PJ, Iwata S, Kunji ER, Michel H et al (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29:335–340

    Article  CAS  PubMed  Google Scholar 

  • Bordag N, Keller S (2010) Alpha-helical transmembrane peptides: a “divide and conquer” approach to membrane proteins. Chem Phys Lipids 163:1–26

    Article  CAS  PubMed  Google Scholar 

  • Bowie JU (2005) Solving the membrane protein folding problem. Nature 438:581–589

    Article  CAS  PubMed  Google Scholar 

  • Caffrey M (2003) Membrane protein crystallization. J Struct Biol 142:108–132

    Article  CAS  PubMed  Google Scholar 

  • Chae PS, Gotfryd K, Pacyna J, Miercke LJ, Rasmussen SG et al (2010a) Tandem facial amphiphiles for membrane protein stabilization. J Am Chem Soc 132:16750–16752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R et al (2010b) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho KH, Bae HE, Das M, Gellman SH, Chae PS (2014) Improved glucose-neopentyl glycol (GNG) amphiphiles for membrane protein solubilization and stabilization. Chem Asian J 9:632–638

    Article  CAS  PubMed  Google Scholar 

  • Damodaran S, Song KB (1990) Effect of water structure makers and breakers on the adsorption of β-casein at the air—water interface. Colloids Surf 50:75–86

    Article  CAS  Google Scholar 

  • Durand G, Abla M, Ebel C, Breyton C (2014) New amphiphiles to handle membrane proteins: “Ménage à Trois” between chemistry, physical chemistry, and biochemistry. In: Membrane proteins production for structural analysis. Springer, New York, pp 205–251

    Google Scholar 

  • Franzin CM, Teriete P, Marassi FM (2007) Structural similarity of a membrane protein in micelles and membranes. J Am Chem Soc 129:8078–8079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furth AJ, Bolton H, Potter J, Priddle JD (1984) Separating detergent from proteins. Methods Enzymol 104:318–328

    Article  CAS  PubMed  Google Scholar 

  • Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406

    Article  CAS  PubMed  Google Scholar 

  • Garavito RM, Picot D, Loll PJ (1996) Strategies for crystallizing membrane proteins. J Bioenerg Biomembr 28:13–27

    Article  CAS  PubMed  Google Scholar 

  • Gohon Y, Popot J-L (2003) Membrane protein–surfactant complexes. Curr Opin Colloid 8:15–22

    Article  CAS  Google Scholar 

  • Goyal PS, Aswal VK (2001) Micellar structure and inter-micelle interactions in micellar solutions: results of small angle neutron scattering studies. Curr Sci 80:972–979

    CAS  Google Scholar 

  • Gu T, Sjöblom J (1992) Surfactant structure and its relation to the Krafft point, cloud point and micellization: some empirical relationships. Colloids Surf 64:39–46

    Article  CAS  Google Scholar 

  • Helenius A, McCaslin DR, Fries E, Tanford C (1979) Properties of detergents. Method Enzymol 56:734–749

    Article  CAS  Google Scholar 

  • Hitscherich C, Aseyev V, Wiencek J, Loll PJ (2001) Effects of PEG on detergent micelles: implications for the crystallization of integral membrane proteins. Acta Crystallogr D Biol Crystallogr 57(7):1020–1029

    Article  PubMed  Google Scholar 

  • Hong WX, Baker KA, Ma X, Stevens RC, Yeager M, Zhang Q (2010) Design, synthesis, and properties of branch-chained maltoside detergents for stabilization and crystallization of integral membrane proteins: human connexin 26. Langmuir 26:8690–8696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilgu H, Jeckelmann JM, Gachet MS, Boggavarapu R, Ucurum Z, Gertsch J, Fotiadis D (2014) Variation of the detergent-binding capacity and phospholipid content of membrane proteins when purified in different detergents. Biophys J 106:1660–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jastrzebska B, Goc A, Golczak M, Palczewski K (2009) Phospholipids are needed for the proper formation, stability, and function of the photoactivated rhodopsin-transducin complex. Biochemistry 48:5159–5170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HJ, Lee C, Drew D (2013) Breaking the barriers in membrane protein crystallography. Int J Biochem Cell Biol 45:636–644

    Article  CAS  PubMed  Google Scholar 

  • Kefala G, Ahn C, Krupa M, Esquivies L, Maslennikov I, Kwiatkowski W, Choe S (2010) Structures of the OmpF porin crystallized in the presence of foscholine-12. Protein Sci 19:1117–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyes M, Gray D, Kreh K, Sanders C (2003) Solubilizing detergents for membrane proteins. Methods and results in crystallization of membrane proteins. International University Line, La Jolla, pp 15–33

    Google Scholar 

  • Knol J, Sjollema K, Poolman B (1998) Detergent-mediated reconstitution of membrane proteins. Biochemistry 37:16410–16415

    Article  CAS  PubMed  Google Scholar 

  • Kragh-Hansen U, le Maire M, Noel JP, Gulik-Krzywicki Tand Moller JV (1993) Transitional steps in the solubilization of protein-containing membranes and liposomes by nonionic detergent. Biochemistry 32:1648–1656

    Article  CAS  PubMed  Google Scholar 

  • Kragh-Hansen U, le Maire M, Moller JV (1998) The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys J 75:2932–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasch J (1995) Interaction of detergents with lipid vesicles. Biochim Biophys Acta 1241:269–292

    Article  PubMed  Google Scholar 

  • le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111

    Article  PubMed  Google Scholar 

  • Lee SC, Bennett BC, Hong WX, Fu Y, Baker KA et al (2013) Steroid-based facial amphiphiles for stabilization and crystallization of membrane proteins. Proc Natl Acad Sci U S A 110:E1203–E1211

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtenberg D, Opatowski E, Kozlov MM (2000) Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles. Biochim Biophys Acta 1508:1–19

    Article  CAS  PubMed  Google Scholar 

  • Lichtenberg D, Ahyayauch H, Goni FM (2013) The mechanism of detergent solubilization of lipid bilayers. Biophys J 105:289–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CM, Chang GP, Tsao HK, Sheng YJ (2011) Solubilization mechanism of vesicles by surfactants: effect of hydrophobicity. J Chem Phys 135(4):045102

    Article  CAS  PubMed  Google Scholar 

  • Linke D (2009) Detergents: an overview. Methods Enzymol 463:603–617, Elsevier Science

    Google Scholar 

  • Lorch M, Batchelor R (2011) Stabilizing membrane proteins in detergent and lipid systems. In: Production of membrane proteins: strategies for expression and isolation. Wiley-VCH Verlg GmbH & Co. KGaA, Weinheim, pp 361–390

    Chapter  Google Scholar 

  • Lórenz-Fonfría V, Perálvarez-Marín A, Padrós E, Lazarova T (2011) Solubilization, purification, and characterization of integral membrane proteins. In: Production of membrane proteins: strategies for expression and isolation. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 317–360

    Chapter  Google Scholar 

  • Matar-Merheb R, Rhimi M, Leydier A, Huche F, Galian C et al (2011) Structuring detergents for extracting and stabilizing functional membrane proteins. PLoS ONE 6(3):e18036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnyk RA, Partridge AW, Yip J, Wu Y, Goto NK, Deber CM (2003) Polar residue tagging of transmembrane peptides. Biopolymers 71:675–685

    Article  CAS  PubMed  Google Scholar 

  • Moraes I, Evans G, Sanchez-Weatherby J, Newstead S, Stewart PD (2014) Membrane protein structure determination – the next generation. Biochim Biophys Acta 1838:78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagarajan R (2002) Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 18:31–38

    Article  CAS  Google Scholar 

  • Nagarajan R (2011) Amphiphilic surfactants and amphiphilic polymers: principles of molecular assembly. In: Amphiphiles: molecular assembly and applications. American Chemical Society, Oxford University Press, Washington, DC, pp 1–22

    Google Scholar 

  • Neugebauer JM (1990) Detergents: an overview. Methods Enzymol 182:239–253

    Article  CAS  PubMed  Google Scholar 

  • Oliver RC, Lipfert J, Fox DA, Lo RH, Doniach S, Columbus L (2013) Dependence of micelle size and shape on detergent alkyl chain length and head group. PLoS ONE 8:e62488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver RC, Lipfert J, Fox DA, Lo RH, Kim JJ et al (2014) Tuning micelle dimensions and properties with binary surfactant mixtures. Langmuir 30:13353–13361

    Article  CAS  PubMed  Google Scholar 

  • Ostermeier C, Michel H (1997) Crystallization of membrane proteins. Curr Opin Struct Biol 7:697–701

    Article  CAS  PubMed  Google Scholar 

  • Otzen DE (2002) Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature. Biophys J 83:2219–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otzen D (2011) Protein-surfactant interactions: a tale of many states. Biochim Biophys Acta 1814:562–591

    Article  CAS  PubMed  Google Scholar 

  • Parker JL, Newstead S (2012) Current trends in alpha-helical membrane protein crystallization: an update. Protein Sci 21:1358–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prive GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Nemethy G (1971) Effects of ionic protein denaturants on micelle formation by nonionic detergents. J Am Chem Soc 93:6787–6793

    Article  CAS  PubMed  Google Scholar 

  • Renthal R (2006) An unfolding story of helical transmembrane proteins. Biochemistry 45:14559–14566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollauer SE, Tarry MJ, Graham JE, Jaaskelainen M, Jager F et al (2012) Structure of the TatC core of the twin-arginine protein transport system. Nature 492:210–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen MJ, Kunjappu JT (2012) Characteristic features of surfactants. In: Surfactants and interfacial phenomena. Wiley, Hoboken, pp 1–38

    Chapter  Google Scholar 

  • Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D et al (2011) Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rummel G, Rosenbusch J (2003) Crystallization of bacterial outer membrane proteins from detergent solutions: porin as a model. Methods and results in crystallization of membrane proteins. International University Line, La Jolla, pp 101–129

    Google Scholar 

  • Santonicola MG, Lenhoff AM, Kaler EW (2008) Binding of alkyl polyglucoside surfactants to bacteriorhodopsin and its relation to protein stability. Biophys J 94:3647–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schagger H, Link TA, Jagow G (2003) Purification strategies for membrane proteins. In: Membrane protein purification and crystallization: a practical guide. Academic press, Amsterdam/Boston, pp 3–21

    Google Scholar 

  • Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci U S A 100:5795–5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:05–117

    Google Scholar 

  • Snijder HJ, Timmins PA, Kalk KH, Dijkstra BW (2003) Detergent organisation in crystals of monomeric outer membrane phospholipase A. J Struct Biol 141:122–131

    Article  CAS  PubMed  Google Scholar 

  • Sonoda Y, Newstead S, Hu NJ, Alguel Y, Nji E et al (2011) Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure 19:17–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tate CG (2010) Practical considerations of membrane protein instability during purification and crystallisation. In: Heterologous expression of membrane proteins. Springer, New York, pp 187–203

    Chapter  Google Scholar 

  • Tulumello DV, Deber CM (2012) Efficiency of detergents at maintaining membrane protein structures in their biologically relevant forms. Biochim Biophys Acta 1818:1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Wiener MC (2004) A pedestrian guide to membrane protein crystallization. Methods 34:364–372

    Article  CAS  PubMed  Google Scholar 

  • Wiseman B, Kilburg A, Chaptal V, Reyes-Mejia GC, Sarwan J, Falson P, Jault JM (2014) Stubborn contaminants: influence of detergents on the purity of the multidrug ABC transporter BmrA. PLoS ONE 9(12):e114864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Tao H, Hong WX (2011) New amphiphiles for membrane protein structural biology. Methods 55:318–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr Isabel Moraes for helpful discussions. Additionally the authors acknowledge funding by grants from the National Health and Medical Research Council of Australia (APP1003697 and APP1078642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Vrielink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anandan, A., Vrielink, A. (2016). Detergents in Membrane Protein Purification and Crystallisation. In: Moraes, I. (eds) The Next Generation in Membrane Protein Structure Determination. Advances in Experimental Medicine and Biology, vol 922. Springer, Cham. https://doi.org/10.1007/978-3-319-35072-1_2

Download citation

Publish with us

Policies and ethics