Skip to main content

Beyond Membrane Protein Structure: Drug Discovery, Dynamics and Difficulties

  • Chapter
The Next Generation in Membrane Protein Structure Determination

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 922))

Abstract

Most of the previous content of this book has focused on obtaining the structures of membrane proteins. In this chapter we explore how those structures can be further used in two key ways. The first is their use in structure based drug design (SBDD) and the second is how they can be used to extend our understanding of their functional activity via the use of molecular dynamics. Both aspects now heavily rely on computations. This area is vast, and alas, too large to consider in depth in a single book chapter. Thus where appropriate we have referred the reader to recent reviews for deeper assessment of the field. We discuss progress via the use of examples from two main drug target areas; G-protein coupled receptors (GPCRs) and ion channels. We end with a discussion of some of the main challenges in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J Am Chem Soc 130:2817–2831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin PC (2016) Accurate calculation of the absolute free energy of binding for drug molecules. Chem Sci 7:207–218

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Garcia D, Barril X (2014) Molecular simulations with solvent competition quantify water displaceability and provide accurate interaction maps of protein binding sites. J Med Chem 57:8530–8539

    Article  PubMed  CAS  Google Scholar 

  • Amaro R, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput-Aided Mol Des 22:693–705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Armstrong N, Gouaux E (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core. Neuron 28:165–181

    Article  PubMed  CAS  Google Scholar 

  • Assaf Z, Larsen AP, Venskutonytė R, Han L, Abrahamsen B et al (2013) Chemoenzymatic synthesis of new 2,4-syn-functionalized (S)-glutamate analogues and structure–activity relationship studies at ionotropic glutamate receptors and excitatory amino acid transporters. J Med Chem 56:1614–1628

    Article  PubMed  CAS  Google Scholar 

  • Ayton GS, Lyman E, Voth GA (2010) Hierarchical coarse-graining strategy for protein-membrane systems to access mesoscopic scales. Faraday Discuss 144:347–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. Wiley Interdiscip Rev Comp Mol Sci 1:826–843

    Article  CAS  Google Scholar 

  • Beddell CR, Goodford PJ, Norrington FE, Wilkinson S, Wootton R (1976) Compounds designed to fit a site of known structure in human haemoglobin. Br J Pharmacol 57:201–209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bermudez M, Wolber G (2015) Structure versus function—the impact of computational methods on the discovery of specific GPCR–ligands. Bioorg Med Chem 23:3907–3912

    Article  PubMed  CAS  Google Scholar 

  • Biggin PC, Bond PJ (2015) Molecular dynamics simulations of membrane proteins. Methods Mol Biol 1215:91–108

    Article  PubMed  CAS  Google Scholar 

  • Bollini M, Domaoal RA, Thakur VV, Gallardo-Macias R, Spasov KA et al (2011) Computationally-guided optimization of a docking hit to yield catechol diethers as potent anti-HIV agents. J Med Chem 54:8582–8591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bortolato A, Tehan BG, Bodnarchuk MS, Essex JW, Mason JS (2013) Water network perturbation in ligand binding: Adenosine A2A antagonists as a case study. J Chem Inf Model 53:1700–1713

    Article  PubMed  CAS  Google Scholar 

  • Boyce SE, Mobley DL, Rocklin GJ, Graves AP, Dill KA et al (2009) Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site. J Mol Biol 394:747–763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci U S A 108:10184–10189

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunch L, Krogsgaard-Larsen P (2009) Subtype selective kainic acid receptor agonists: discovery and approaches to rational design. Med Res Rev 29:3–28

    Article  PubMed  CAS  Google Scholar 

  • Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A et al (2015) Structural basis for chemokine recognition and activation of a viral G protein–coupled receptor. Science 347:1113–1117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caldwell N, Harms JE, Partin KM, Jamieson C (2015) Rational design of a novel AMPA receptor modulator through a hybridization approach. ACS Med Chem Lett 6:392–396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavalli A, Spitaleri A, Saladino G, Gervasio FL (2015) Investigating drug–target association and dissociation mechanisms using metadynamics-based algorithms. Acc Chem Res 48:277–285

    Article  PubMed  CAS  Google Scholar 

  • Cerqueira NM, Gesto D, Oliveira EF, Santos-Martins D, Brás NF et al (2015) Receptor-based virtual screening protocol for drug discovery. Arch Biochem Biophys, epub online

    Article  PubMed  CAS  Google Scholar 

  • Chen JM, Xu SL, Wawrzak Z, Basarab GS, Jordan DB (1998) Structure-based design of potent inhibitors of scytalone dehydratase: displacement of a water molecule from the active site. Biochemistry 37:17735–17744

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Wang CZ, Ding C, Wild C, Copits B et al (2013) A combined bioinformatics and chemoinformatics approach for developing asymmetric bivalent ampa receptor positive allosteric modulators as neuroprotective agents. ChemMedChem 8:226–230

    Article  PubMed  CAS  Google Scholar 

  • Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14:133–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chipot C (2014) Frontiers in free-energy calculations of biological systems. Wiley Interdiscip Rev Comput Mol Sci 4:71–89

    Article  CAS  Google Scholar 

  • Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K et al (2011) Alchemical free energy methods for drug discovery: progress and challenges. Curr Opin Struct Biol 21:150–160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarke C, Woods RJ, Gluska J, Cooper A, Nutley MA et al (2001) Involvement of water in carbohydrate-protein binding. J Am Chem Soc 123:12238–12247

    Article  PubMed  CAS  Google Scholar 

  • Cohen SS (1977) A strategy for the chemotherapy of infectious disease. Science 197:431–432

    Article  PubMed  CAS  Google Scholar 

  • Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY et al (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49:1455–1474

    Article  PubMed  CAS  Google Scholar 

  • Cusack KP, Wang Y, Hoemann MZ, Marjanovic J, Heym RG et al (2015) Design strategies to address kinetics of drug binding and residence time. Bioorg Med Chem Lett 25:2019–2027

    Article  PubMed  CAS  Google Scholar 

  • Demmer CS, Møller C, Brown PMGE, Han L, Pickering DS et al (2015) Binding mode of an α-amino acid-linked quinoxaline-2,3-dione analogue at glutamate receptor subtype GluK1. ACS Chem Neurosci 6:845–854

    Article  PubMed  CAS  Google Scholar 

  • Doerr S, De Fabritiis G (2014) On-the-fly learning and sampling of ligand binding by high-throughput molecular simulations. J Chem Theor Comput 10:2064–2069

    Article  CAS  Google Scholar 

  • Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P et al (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci U S A 108:13118–13123

    Article  PubMed  PubMed Central  Google Scholar 

  • Dror RO, Mildorf TJ, Hilger D, Manglik A, Borhani DW et al (2015) Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348:1361–1365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elokely KM, Doerksen RJ (2013) Docking challenge: protein sampling and molecular docking performance. J Chem Inf Model 53:1934–1945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fedorov DG, Kitaura K (2007) Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem A 111:6904–6914

    Article  PubMed  CAS  Google Scholar 

  • Forli S, Olson A (2015) Computational challenges of structure-based approaches applied to HIV. In: Torbett BE, Goodsell DS, Richman DD (eds) The future of HIV-1 therapeutics.: Springer International Publishing, pp 31–51

    Google Scholar 

  • Frembgen-Kesner T, Elcock AH (2006) Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase. J Mol Biol 359:202–214

    Article  PubMed  CAS  Google Scholar 

  • Frydenvang K, Pickering DS, Greenwood JR, Krogsgaard-Larsen N, Brehm L et al (2010) Biostructural and pharmacological studies of bicyclic analogues of the 3-isoxazolol glutamate receptor agonist ibotenic acid. J Med Chem 53:8354–8361

    Article  PubMed  CAS  Google Scholar 

  • Fujitani H, Tanida Y, Ito M, Jayachandran G, Snow CD et al (2005) Direct calculation of the binding free energies of FKBP ligands. J Chem Phys 123(8):084108

    Article  PubMed  CAS  Google Scholar 

  • Gilson MK, Zhou H-X (2007) Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42

    Article  PubMed  CAS  Google Scholar 

  • Gohlke H, Klebe G (2002) Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed 41:2644–2676

    Article  CAS  Google Scholar 

  • Goose JE, Sansom MSP (2013) Reduced lateral mobility of lipids and proteins in crowded membranes. PLoS Comp Biol 9, e1003033

    Article  CAS  Google Scholar 

  • Grouleff J, Irudayam SJ, Skeby KK, Schiøtt B (2015) The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim Biophys Acta 1848:1783–1795

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Mulder-Krieger T, Ijzerman AP, Heitman LH (2012) Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time. Br J Pharm 166:1846–1859

    Article  CAS  Google Scholar 

  • Guo D, Hillger JM, Ijzerman AP, Heitman LH (2014) Drug-target residence time—a case for G protein-coupled receptors. Med Res Rev 34:856–892

    Article  PubMed  CAS  Google Scholar 

  • Han M, Lou J, Nakanishi K, Sakmar TP, Smith SO (1997) Partial agonist activity of 11-cis-retinal in rhodopsin mutants. J Biol Chem 272:23081–23085

    Article  PubMed  CAS  Google Scholar 

  • Harms JE, Benveniste M, MacLean JKF, Partin KM, Jamieson C (2013) Functional analysis of a novel positive allosteric modulator of AMPA receptors derived from a structure-based drug design strategy. Neuropharmacology 64:45–52

    Article  PubMed  CAS  Google Scholar 

  • Harvey MJ, De Fabritiis G (2015) AceCloud: molecular dynamics simulations in the cloud. J Chem Inf Model 55:909–914

    Article  PubMed  CAS  Google Scholar 

  • Heifetz A, Morris GB, Biggin PC, Barker O, Fryatt T et al (2012) Study of human Orexin-1 and −2 -G-protein-coupled receptors with novel and published antagonists by modeling, molecular dynamics simulations, and site-directed mutagenesis. Biochemistry 51:3178–3197

    Article  PubMed  CAS  Google Scholar 

  • Heifetz A, Barker O, Morris GB, Law RJ, Slack M et al (2013a) Toward an understanding of agonist binding to human Orexin-1 and Orexin-2 receptors with G-protein-coupled receptor modeling and site directed mutagenesis. Biochemistry 52:8246–8260

    Article  PubMed  CAS  Google Scholar 

  • Heifetz A, Barker O, Verquin G, Wimmer N, Meutermans W, Pal S, Law RJ, Whittaker M (2013b) Fighting obesity with a sugar-based library: discovery of novel MCH-1R antagonists by a new computational-VAST approach for exploration of GPCR binding sites. J Chem Inf Model 53:1084–1099

    Article  PubMed  CAS  Google Scholar 

  • Heifetz A, Mazanetz M, James T, Pal S, Law RJ et al (2013c) From receptors to ligands: fragment-assisted drug design for GPCRs applied to the discovery of H3 and H4 receptor antagonists. Med Chem 4:313–321

    Google Scholar 

  • Heifetz A, Schertler GX, Seifert R, Tate C, Sexton P et al (2015) GPCR structure, function, drug discovery and crystallography: report from Academia-Industry International Conference (UK Royal Society) Chicheley Hall, 1–2 September 2014. Naunyn-Schmiedeberg’s Arch Pharmacol 388:883–903

    Article  CAS  Google Scholar 

  • Henchman RH, McCammon JA (2002) Extracting hydration sites around proteins from explicit water simulations. J Comput Chem 23:861–869

    Article  PubMed  CAS  Google Scholar 

  • Higgs C, Beuming T, Sherman W (2010) Hydration site thermodynamics explain SARs for Triazolylpurines analogues binding to the A2A receptor. ACS Med Chem Lett 1:160–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoffmann C, Castro M, Rinken A, Leurs R, Hill SJ et al (2015) Ligand residence time at GPCRs – why we should take our time to study it. Mol Pharm 88:552–560

    Article  CAS  Google Scholar 

  • Holst B, Nygaard R, Valentin-Hansen L, Bach A, Engelstoft MS et al (2010) A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors. J Biol Chem 285:3973–3985

    Article  PubMed  CAS  Google Scholar 

  • Imai T, Hiraoka R, Kovalenko A, Hirata F (2007) Locating missing water molecules in protein cavities by the three-dimensional reference interaction site model theory of molecular solvation. Proteins Struct Func Genet 66:804–813

    Article  CAS  Google Scholar 

  • Imai T, Oda K, Kovalenko A, Hirata F, Kidera A (2009) Ligand mapping on protein surfaces by the 3D-RISM theory: toward computational fragment-based drug design. J Am Chem Soc 131:12430–12440

    Article  PubMed  CAS  Google Scholar 

  • Isberg V, Vroling B, van der Kant R, Li K, Vriend G et al (2014) GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res 42:D422–D425

    Article  PubMed  CAS  Google Scholar 

  • Ivetac A, McCammon JA (2010) Mapping the druggable allosteric space of g-protein coupled receptors: a fragment-based molecular dynamics approach. Chem Biol Drug Des 76:201–217

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jamieson C, Maclean JKF, Brown CI, Campbell RA, Gillen KJ et al (2011) Structure based evolution of a novel series of positive modulators of the AMPA receptor. Bioorg Med Chem Lett 21:805–811

    Article  PubMed  CAS  Google Scholar 

  • Jazayeri A, Dias JM, Marshall FH (2015) From G protein-coupled receptor structure resolution to rational drug design. J Biol Chem 290:19489–19495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jensen M, Jogini V, Borhani DW, Leffler AE, Dror RO et al (2012) Mechanism of voltage gating in potassium channels. Science 336:229–233

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen WL (2009) Efficient drug lead discovery and optimization. Acc Chem Res 42:724–733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jorgensen WL, Bollini M, Thakur VV, Domaoal RA, Spasov KA et al (2011) Efficient discovery of potent anti-HIV agents targeting the Tyr181Cys variant of HIV reverse transcriptase. J Am Chem Soc 133:15686–15696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juknaitė L, Venskutonytė R, Assaf Z, Faure S, Gefflaut T et al (2012) Pharmacological and structural characterization of conformationally restricted (S)-glutamate analogues at ionotropic glutamate receptors. J Struct Biol 180:39–46

    Article  PubMed  CAS  Google Scholar 

  • Kalli AC, Campbell ID, Sansom MSP (2013) Conformational changes in talin on binding to anionic phospholipid membranes facilitate signaling by integrin transmembrane helices. PLoS Comp Biol 9, e1003316

    Article  Google Scholar 

  • Keserü GM, Swinney DC (eds) (2015) Thermodynamics and kinetics of drug binding. Wiley-VCH, Verlag GmbH & Co. KGaA, Heidelberg

    Google Scholar 

  • Khatri A, Burger PB, Swanger SA, Hansen KB, Zimmerman S et al (2014) Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. Mol Pharm 86:548–560

    Article  CAS  Google Scholar 

  • Klebe G (2015) The use of thermodynamic and kinetic data in drug discovery: decisive insight or increasing the puzzlement? ChemMedChem 10:229–231

    Article  PubMed  CAS  Google Scholar 

  • Lam PY, Jadhav PK, Eyermann CJ, Hodge CN, Ru Y et al (1994) Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 263:380–384

    Article  PubMed  CAS  Google Scholar 

  • Lape R, Colquhoun D, Sivilotti LG (2008) On the nature of partial agonism in the nicotinic receptor superfamily. Nature 454:722–727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazaridis T (1998a) Inhomogeneous fluid approach to solvation thermodynamics. 1. Theory. J Phys Chem B 102:3531–3541

    Article  CAS  Google Scholar 

  • Lazaridis T (1998b) Inhomogeneous fluid approach to solvation thermodynamics. 2. Applications to simple fluids. J Phys Chem B 102:3542–3550

    Article  CAS  Google Scholar 

  • Lee J, Daniels V, Sands ZA, Lebon F, Shi J et al (2015) Exploring the interaction of SV2A with racetams using homology modelling, molecular dynamics and site-directed mutagenesis. PLoS ONE 10, e0116589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levoin N, Calmels T, Krief S, Danvy D, Berrebi-Bertrand I et al (2011) Homology model versus x-ray structure in receptor-based drug design: a retrospective analysis with the dopamine D3 receptor. ACS Med Chem Lett 2:293–297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z, Lazaridis T (2003) Thermodynamic contributions of the ordered water molecule in HIV-1 protease. J Am Chem Soc 125:6636–6637

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Lazaridis T (2005a) The effect of water displacement on binding thermodynamics: concanavalin A. J Phys Chem B 109:662–670

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Lazaridis T (2005b) Thermodynamics of buried water clusters at a protein at ligand binding interface. J Phys Chem B 110:1464–1475

    Article  CAS  Google Scholar 

  • Limongelli V, Bonomi M, Parrinello M (2013) Funnel metadynamics as accurate binding free-energy method. Proc Natl Acad Sci U S A 110:6358–6363

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin Y-L, Roux B (2013) Computational analysis of the binding specificity of Gleevec to Abl, c-Kit, Lck, and c-Src tyrosine kinases. J Am Chem Soc 135:14741–14753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin JH, Perryman AL, Schames JR, McCammon JA (2002) Computational drug-design accomodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124:5632–5633

    Article  PubMed  CAS  Google Scholar 

  • Lin Y-L, Meng Y, Jiang W, Roux B (2013) Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Proc Natl Acad Sci U S A 110:1664–1669

    Article  PubMed  PubMed Central  Google Scholar 

  • Lionta E, Spyrou G, Vassilatis DK, Cournia Z (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14:1923–1938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP et al (2013) Current progress in structure-based rational drug design marks a new mindset in drug discovery. Comput Struct Biotechnol J 5, e201302011

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Wang R, Yang C-Y, Wang S (2007) Analysis of ligand-bound water molecules in high resolution crystal structures of protein-ligand complexes. J Chem Inf Model 47:668–675

    Article  PubMed  CAS  Google Scholar 

  • Lukman S, Verma C, Fuentes G (2014) Exploiting protein intrinsic flexibility in drug design. In: Han K-l, Zhang X, Yang M-J (eds) Protein conformational dynamics. Springer International Publishing, pp 245–269

    Google Scholar 

  • Marshall G (2012) Limiting assumptions in structure-based design: binding entropy. J Comput-Aided Mol Des 26:3–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mason JS, Bortolato A, Congreve M, Marshall FH (2012) New insights from structural biology into the druggability of G protein-coupled receptors. Trends Pharm Sci 33:249–260

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Nichols SE, McCammon JA (2014) Mapping of allosteric druggable sites in activation-associated conformers of the M2 muscarinic receptor. Chem Biol Drug Des 83:237–246

    Article  PubMed  CAS  Google Scholar 

  • Michel J, Essex JW (2010) Prediction of protein-ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations. J Comput Aided Mol Des 24:639–658

    Article  PubMed  CAS  Google Scholar 

  • Michel J, Tirado-Rives J, Jorgensen WL (2009) Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization. J Am Chem Soc 131:15403–15411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michel J, Foloppe N, Essex JW (2010) Rigorous free energy calculations in structure-based drug design. Mol Inf 29:570–578

    Article  CAS  Google Scholar 

  • Micheletti C (2013) Comparing proteins by their internal dynamics: exploring structure-function relationships beyond static structural alignments. Phys Life Rev 10:1–26

    Article  PubMed  CAS  Google Scholar 

  • Miller DC, Lunn G, Jones P, Sabnis Y, Davies NL et al (2012) Investigation of the effect of molecular properties on the binding kinetics of a ligand to its biological target. Med Chem Commun 3:449–452

    Article  CAS  Google Scholar 

  • Mobley DL (2014) Blind prediction of HIV integrase binding from the SAMPL4 challenge. J Comput-Aided Mol Des 28:1–19

    Article  CAS  Google Scholar 

  • Mobley DL, Dill KA (2009) Binding of small-molecule ligands to proteins: “What you see” is not always “What you get”. Structure 17:489–498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mobley DL, Klimovich PV (2012) Perspective: alchemical free energy calculations for drug discovery. J Chem Phys 137:230901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mobley DL, Chodera JD, Dill KA (2007a) Confine-and-release method: obtaining correct binding free energies in the presence of protein conformational change. J Chem Theory Comput 3:1231–1235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK et al (2007b) Predicting absolute ligand binding free energies to a simple model site. J Mol Biol 371:1118–1134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mondal J, Friesner RA, Berne BJ (2014a) Role of desolvation in thermodynamics and kinetics of ligand binding to a kinase. J Chem Theory Comput 10:5696–5705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mondal S, Khelashvili G, Weinstein H (2014b) Not just an oil slick: how the energetics of protein-membrane interactions impacts the function and organization of transmembrane proteins. Biophys J 106:2305– 2316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moroni E, Paladino A, Colombo G (2015) The dynamics of drug discovery. Curr Top Med Chem 15:2043–2055

    Article  PubMed  CAS  Google Scholar 

  • Münz M, Lyngsø R, Hein J, Biggin PC (2010) Dynamics-based alignment of proteins: An alternative approach to quantify dynamic similarity. BMC Bioinf 11:118

    Article  CAS  Google Scholar 

  • Münz M, Hein J, Biggin PC (2012) The role of flexibility and conformational selection in the binding promiscuity of PDZ domains. PLoS Comput Biol 8, e1002749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murail S, Wallner B, Trudell James R, Bertaccini E, Lindahl E (2011) Microsecond simulations indicate that ethanol binds between subunits and could stabilize an open-state model of a glycine receptor. Biophys J 100:1642–1650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murail S, Howard RJ, Broemstrup T, Bertaccini EJ, Harris RA et al (2012) Molecular mechanism for the dual alcohol modulation of cys-loop receptors. PLoS Comput Biol 8, e1002710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newman AH, Beuming T, Banala AK, Donthamsetti P, Pongetti K et al (2012) Molecular determinants of selectivity and efficacy at the Dopamine D3 receptor. J Med Chem 55:6689–6699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nichols SE, Baron R, Ivetac A, McCammon JA (2011) Predictive power of molecular dynamics receptor structures in virtual screening. J Chem Inf Model 51:1439–1446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pande VS, Beauchamp K, Bowman GR (2010) Everything you wanted to know about Markov State Models but were afraid to ask. Methods 52:99–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Partin KM (2015) AMPA receptor potentiators: from drug design to cognitive enhancement. Curr Opin Pharmacol 20:46–53

    Article  PubMed  CAS  Google Scholar 

  • Pearlstein RA, Sherman W, Abel R (2013) Contributions of water transfer energy to protein-ligand association and dissociation barriers: Watermap analysis of a series of p38α MAP kinase inhibitors. Proteins Struct Func Bioinf 81:1509–1526

    Article  CAS  Google Scholar 

  • Pei J, Yin N, Ma X, Lai L (2014) Systems biology brings new dimensions for structure-based drug design. J Am Chem Soc 136:11556–11565

    Article  PubMed  CAS  Google Scholar 

  • Pirotte B, Francotte P, Goffin E, de Tullio P (2013) AMPA receptor positive allosteric modulators: a patent review. Expert Opin Ther Pat 23:615–628

    Article  PubMed  CAS  Google Scholar 

  • Pronk S, Larsson P, Pouya I, Bowman GR, Haque IS, et al (2011) Copernicus: a new paradigm for parallel adaptive molecular dynamics. In: Proceedings of 2011 international conference for high performance computing, networking, storage and analysis. ACM, Seattle, pp 1–10

    Google Scholar 

  • Robinson DD, Sherman W, Farid R (2010) Understanding kinase selectivity through energetic analysis of binding site waters. ChemMedChem 5:618–627

    Article  PubMed  CAS  Google Scholar 

  • Ross GA, Morris GM, Biggin PC (2012) Rapid and accurate prediction and scoring of water molecules in protein binding sites. PLoS ONE 7, e32036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ross GA, Morris GM, Biggin PC (2013) One size does not fit all: the limits of structure-based models in drug discovery. J Chem Theory Comput 9:4266–4274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahai MA, Biggin PC (2011) Quantifying water-mediated protein-ligand interactions in a glutamate receptor; A DFT study. J Phys Chem 115:7085–7096

    Article  CAS  Google Scholar 

  • Salari R, Murlidaran S, Brannigan G (2014) Pentameric ligand-gated ion channels: insights from computation. Mol Sim 40:821–829

    Article  CAS  Google Scholar 

  • Schames JR, Henchman RH, Siegel JS, Sotriffer CA, Ni H et al (2004) Discovery of a novel binding trench in HIV integrase. J Med Chem 47:1879–1881

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T, Bergner A, Schwede T (2014) Modelling three-dimensional protein structures for applications in drug design. Drug Discov Today 19:890–897

    Article  PubMed  CAS  Google Scholar 

  • Schneider EV, Böttcher J, Huber R, Maskos K, Neumann L (2013) Structure–kinetic relationship study of CDK8/CycC specific compounds. Proc Natl Acad Sci U S A 110:8081–8086

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz TW, Frimurer TM, Holst B, Rosenkilde MM, Elling CE (2006) Molecular mechanism of 7tm receptor activation—a global toggle switch model. Ann Rev Pharmacol Toxicol 46:481–519

    Article  CAS  Google Scholar 

  • Seddon G, Lounnas V, McGuire R, van den Bergh T, Bywater RP et al (2012) Drug design for ever, from hype to hope. J Comp Aided Mol Des 26:137–150

    Article  CAS  Google Scholar 

  • Sengupta D, Chattopadhyay A (2015) Molecular dynamics simulations of GPCR–cholesterol interaction: an emerging paradigm. Biochim Biophys Acta 1848:1775–1782

    Article  PubMed  CAS  Google Scholar 

  • Shirts MR, Mobley DL, Chodera JD (2007) Free energy calculations: ready for prime time? In: D. S, R. W (eds) Annu Rep Comput Chem, Elsevier, pp 41–59

    Google Scholar 

  • Shirts MR, Mobley DL, Brown SP (2010) Free-energy calculations in structure-based drug design. In: Merz KM, Ringe D, Reynolds CH (eds) Drug design. Cambridge University Press, Cambridge, pp 61–86

    Google Scholar 

  • Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shukla D, Hernández CX, Weber JK, Pande VS (2015) Markov state models provide insights into dynamic modulation of protein function. Acc Chem Res 48:414–422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sivaprakasam M, Hansen KB, David O, Nielsen B, Traynelis SF et al (2009) Stereocontrolled synthesis and pharmacological evaluation of Azetidine-2,3-Dicarboxylic acids at NMDA receptors. ChemMedChem 4:110–117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skolnick J, Zhou H, Gao M (2013) Are predicted protein structures of any value for binding site prediction and virtual ligand screening? Curr Opin Struct Biol 23:191–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spurny R, Debaveye S, Farinha A, Veys K, Vos AM et al (2015) Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 112:E2543–E2552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stansfeld Phillip J, Goose Joseph E, Caffrey M, Carpenter Elisabeth P, Parker Joanne L et al (2015) MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure 23:1350–1361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strong KL, Jing Y, Prosser AR, Traynelis SF, Liotta DC (2014) NMDA receptor modulators: an updated patent review (2013–2014). Exp Opin Ther Pat 24:1349–1366

    Article  CAS  Google Scholar 

  • Swinney DC (2009) The role of binding kinetics in therapeutically useful drug action. Curr Opin Drug Discov Dev 12:31–39

    CAS  Google Scholar 

  • Tang H, Wang XS, Hsieh J-H, Tropsha A (2012) Do crystal structures obviate the need for theoretical models of GPCRs for structure based virtual screening. Proteins 80:1503–1521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tate CG (2012) A crystal clear solution for determining G-protein-coupled receptor structures. Trends Biochem Sci 37:343–352

    Article  PubMed  CAS  Google Scholar 

  • Tehan BG, Bortolato A, Blaney FE, Weir MP, Mason JS (2014) Unifying family A GPCR theories of activation. Pharm Res 143:51–60

    CAS  Google Scholar 

  • Timm DE, Benveniste M, Weeks AM, Nisenbaum ES, Partin KM (2011) Structural and functional analysis of two new positive allosteric modulators of GluA2 desensitization and deactivation. Mol Pharm 80:267–280

    Article  CAS  Google Scholar 

  • Tiwary P, Limongelli V, Salvalaglio M, Parrinello M (2015) Kinetics of protein–ligand unbinding: predicting pathways, rates, and rate-limiting steps. Proc Natl Acad Sci U S A 112:E386–E391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tran Q-T, Williams S, Farid R, Erdemli G, Pearlstein R (2013) The translocation kinetics of antibiotics through porin OmpC: insights from structure-based solvation mapping using WaterMap. Proteins Struct Func Bioinf 81:291–299

    Article  CAS  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tye H, Mueller SG, Prestle J, Scheuerer S, Schindler M et al (2011) Novel 6,7,8,9-tetrahydro-5H-1,4,7,10a-tetraaza-cyclohepta[f]indene analogues as potent and selective 5-HT2C agonists for the treatment of metabolic disorders. Bioorg Med Chem Lett 21:34–37

    Article  PubMed  CAS  Google Scholar 

  • Uteshev VV (2014) The therapeutic promise of positive allosteric modulation of nicotinic receptors. Eur J Pharm 727:181–185

    Article  CAS  Google Scholar 

  • Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF et al (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    Article  PubMed  CAS  Google Scholar 

  • Venskutonytė R, Larsen AP, Frydenvang K, Gajhede M, Sagot E et al (2014) Molecular recognition of two 2,4-syn-functionalized (S)-glutamate analogues by the kainate receptor GluK3 ligand binding domain. ChemMedChem 9:2254–2259

    Article  PubMed  CAS  Google Scholar 

  • Vijayan R, Sahai MA, Czajkowski T, Biggin PC (2010) A comparative analysis of the role of water in the binding pockets of ionotropic glutamate receptors. Phys Chem Chem Phys 12:14057–14066

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Deng Y, Roux B (2006) Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys J 91:2798–2814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Wu Y, Deng Y, Kim B, Pierce L et al (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137:2695–2703

    Article  PubMed  CAS  Google Scholar 

  • Ward SE, Harries M, Aldegheri L, Austin NE, Ballantine S et al (2010) Integration of lead optimization with crystallography for a membrane-bound ion channel target: discovery of a new class of AMPA receptor positive allosteric modulators. J Med Chem 54:78–94

    Article  PubMed  CAS  Google Scholar 

  • Ward SE, Pennicott LE, Beswick P (2015) AMPA receptor-positive allosteric modulators for the treatment of schizophrenia: an overview of recent patent applications. Future Med Chem 7:473–491

    Article  PubMed  CAS  Google Scholar 

  • Wassman CD, Baronio R, Demir Ö, Wallentine BD, Chen C-K et al (2013) Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nat Commun 4:1407

    Article  PubMed  CAS  Google Scholar 

  • Weeks AM, Harms JE, Partin KM, Benveniste M (2014) Functional insight into development of positive allosteric modulators of AMPA receptors. Neuropharm 85:57–66

    Article  CAS  Google Scholar 

  • Wissner A, Berger DM, Boschelli DH, Floyd MB Jr, Greenberger LM et al (2000) 4-Anilino-6,7-dialkoxyquinoline-3-carbonitrile inhibitors of epidermal growth factor receptor kinase and their bioisosteric relationship to the 4-anilino-6,7-dialkoxyquinazoline inhibitors. J Med Chem 43:3244–3256

    Article  PubMed  CAS  Google Scholar 

  • Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS 275:1–21

    Article  CAS  Google Scholar 

  • Wlodawer A, Minor W, Dauter Z, Jaskolski M (2013) Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS 280:5705–5736

    Article  CAS  Google Scholar 

  • Young JW, Geyer MA (2013) Evaluating the role of the alpha-7 nicotinic acetylcholine receptor in the pathophysiology and treatment of schizophrenia. Biochem Pharm 86:1122–1132

    Article  PubMed  CAS  Google Scholar 

  • Young RJ, Campbell M, Borthwick AD, Brown D, Burns-Kurtis CL et al (2006) Structure- and property-based design of factor Xa inhibitors: pyrrolidin-2-ones with acyclic alanyl amides as P4 motifs. Bioorg Med Chem Lett 16:5953–5957

    Article  PubMed  CAS  Google Scholar 

  • Yu R, Hurdiss E, Greiner T, Lape R, Sivilotti L et al (2014) Agonist and antagonist binding in human glycine receptors. Biochemistry 53:6041–6051

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, van Veldhoven JPD, Louvel J, ’t Hart IME, Rook MB et al (2015) Structure–affinity relationships (SARs) and structure–kinetics relationships (SKRs) of Kv11.1 blockers. J Med Chem 58:5916–5929

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MA is supported by the EPSRC and Evotec via the Systems Approaches to Biomedical Sciences Doctoral Training Centre. Philip C. Biggin acknowledges support from the BBSRC and MRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip C. Biggin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Biggin, P.C., Aldeghi, M., Bodkin, M.J., Heifetz, A. (2016). Beyond Membrane Protein Structure: Drug Discovery, Dynamics and Difficulties. In: Moraes, I. (eds) The Next Generation in Membrane Protein Structure Determination. Advances in Experimental Medicine and Biology, vol 922. Springer, Cham. https://doi.org/10.1007/978-3-319-35072-1_12

Download citation

Publish with us

Policies and ethics