Skip to main content

Soil Amendments for Heavy Metal Immobilization Using Different Crops

  • Chapter
  • First Online:
Soil Science: Agricultural and Environmental Prospectives

Abstract

Industrial development has put enormous negative impacts on the natural environment. Metal refining units using pyrometallurgical processes have emitted excessive load of heavy metals. Soil is the prime target of such contaminants and polluted in over the vast area. Soil pollution poses a great threat to public globally. Heave metals (HMs) are persistent in nature and do not undergo chemical or biological breakdown, but remain in the environment for long periods since their emission. Immobilization is an in-situ remediation technique that uses cost effective soil amendments to reduce Pb and Cd availability in the contaminated soils. This chapter has focused on heavy metal pollution in the soil through considering: sources, types of soil contaminants, global overview of soil pollution, environmental health risks and immobilization options using various soil amendments. This chapter describes commonly used and emerging cost effective amendments for heavy metal immobilization. There is a dire need to develop procedures to determine immobilization efficacy that could be used to assess the in situ short and long-term environmental stability of metal immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin J, Beckett P, Spiers G (2012) An evaluation of extractants for assessment of metal phytoavailability to guide reclamation practices in acidic soils capes in northern regions. Can J Soil Sci 92:253–268

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Akmal M, Xu J, Li Z, Wang H, Yao H (2005) Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere 60(4):508–514. doi:http://dx.doi.org/10.1016/j.chemosphere.2005.01.001

    Google Scholar 

  • Al GA (2010) Effect of heavy metals on soil microbial processes and population. Egypt Acad J biolog Sci 2(2):9–14

    Google Scholar 

  • Ashraf M, Ozturk M, Ahmad MSA (eds) (2010) Plant adaptation and phytoremediation. Science + Business Media, New York, 481 pp

    Google Scholar 

  • Ashraf MY, Roohi M, Iqbal Z, Ashraf M, Ozturk M, Gücel S (2015) Cadmium (Cd) and Lead (Pb) induced inhibition in growth and alteration in some biochemical attributes and mineral accumulation in Mung bean [Vigna radiata (L.) Wilczek]. Communications in soil science and plant analysis-Taylor & Francis ISSN: 0010–3624 (Print) 1532–2416 (Online)

    Google Scholar 

  • Aziz H, Sabir M, Ahmad HR, Aziz T, Zia-ur-Rehman M, Hakeem KR, Ozturk M (2015) Alleviating effect of calcium on nickel toxicity in rice. CLEAN-Soil Air Water 43(6):901–909

    Article  CAS  Google Scholar 

  • Bakirdere S, Yaman M (2008) Determination of lead, cadmium and copper in roadside soil and plants in Elazig, Turkey. Environ Monit Assess 136(1–3):401–410

    CAS  PubMed  Google Scholar 

  • Barcelo J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2:333–344

    Google Scholar 

  • Basta NT, Gradwohl R (2000) Estimation of Cd, Pb, and Zn bioavailability in smelter contaminated soils by a sequential extraction procedure. J Soil Contam 9:149–164

    Article  CAS  Google Scholar 

  • Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J Environ Qual 34(1):49–63

    Article  CAS  PubMed  Google Scholar 

  • Bees L, Moreno-Jimenez E, Gomez-Eyles JL (2010) Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    Article  CAS  Google Scholar 

  • Biester H, Bindler R, Martinez-Cortizas A, Engstrom DR (2007) Modeling the past atmospheric deposition of mercury using natural archives. Environ Sci Technol 41(14):4851–4860

    Article  CAS  PubMed  Google Scholar 

  • Bernard A (2008) Cadmium & its adverse effects on human health. Indian J Med Res 128(4):557–564

    CAS  PubMed  Google Scholar 

  • Bharti S, Banerjee TK (2012) Phytoremediation of the coalmine effluent. Ecotoxicol Environ Saf 81(0):36–42. doi:http://dx.doi.org/10.1016/j.ecoenv.2012.04.009

    Google Scholar 

  • Bhattacharya S, Gupta K, Debnath S, Ghosh UC, Chattopadhyay D, Mukhopadhyay A (2012) Arsenic bioaccumulation in rice and edible plants and subsequent transmission through food chain in Bengal basin: a review of the perspectives for environmental health. Toxicol Environ Chem 94:429–441

    Article  CAS  Google Scholar 

  • Bhattacharya S, Das A, Prashanthi K, Palaniswamy M, Angayarkanni J (2014) Mycoremediation of Benzo[a]pyrene by pleurotus ostreatus in the presence of heavy metals and mediators. 3 Biotech 4(2):205–211. doi:10.1007/s13205-013-0148-y

    Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18(2):213–217

    Article  CAS  PubMed  Google Scholar 

  • Bolan NS, Adriano DC, Naidu R (2003a) Role of phosphorus in (im) mobilization and bioavailability of heavy metals in the soil–plant system. Rev Environ Contam Toxicol 177:1–44

    CAS  PubMed  Google Scholar 

  • Bolan NS, Adriano DC, Duraisamy A, Mani P (2003b) Immobilization and phytoavailability of cadmium in variable charge soils. III. Effect of biosolid compost addition. Plan Soil 256:231–241

    Article  CAS  Google Scholar 

  • Bolan NS, Adriano DC, Mani P, Duraisamy A, Arulmozhiselvan S (2003c) Immobilization and phytoavailability of cadmium in variable charge soils: I. Effect of phosphate addition. Plant Soil 250:83–94

    Article  CAS  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajana R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal (loid)s contaminated soils – To mobilizeor to immobilize? J Hazard Mater 266:141–166

    Article  CAS  PubMed  Google Scholar 

  • Brown S, Chaney RL, Hallfrisch JG, Xue Q (2003) Effect of biosolids processing on lead bioavailability in an urban soil. J Environ Qual 32:100–108

    Article  CAS  PubMed  Google Scholar 

  • Butcher DJ (2009) Phytoremediation of arsenic: fundamental studies, practical applications, and future prospects. Appl Spectrosc Rev 44(6):534–551

    Article  CAS  Google Scholar 

  • Boularbah A, Schwartz C, Bitton G, Aboudrar W, Ouhammou A, Morel JL (2006) Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere 63(5):811–817

    Article  CAS  PubMed  Google Scholar 

  • Camargo JA (2002) Contribution of Spanish–American silver mines (1570–1820) to the present high mercury concentrations in the global environment: a review. Chemosphere 48(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Castaldi P, Santona L, Melis P (2005) Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere 60:365–371

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Xu M, Ma Y, Yang J (2009) Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicol Environ Saf 6:278–285

    Google Scholar 

  • Chen X, Xia X, ZhaoY PZ (2010) Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J Hazard Mater 181:640–646

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Hu Y (2010) Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environ Pollut 158(5):1134–1146

    Article  CAS  PubMed  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12. doi:10.1155/2014/752708

    Article  CAS  Google Scholar 

  • Chrysochoou M, Dermatas D, Grubb DG (2007) Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate. J Hazard Mater 144:1–14

    Article  CAS  PubMed  Google Scholar 

  • Churchill R, Meathrel C, Suter P (2004) A retrospective assessment of gold mining in the Reedy Creek sub-catchment, northeast Victoria, Australia: residual mercury contamination 100 years later. Environ Pollut 132(2):355–363

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Convard, Nancy SA, Tomlinson A, Welch C (2005) Strategies for preventing and mitigating land-based sources of pollution to trans-boundary water resources in the Pacific region, SPREP

    Google Scholar 

  • Contin M, Mondini C, Leita L, Zaccheo P, Crippa L, Nobili MD (2008) Immobilization of soil toxic metals by repeated additions of Fe (II) sulphate solution. Geoderma 147:133–140

    Article  CAS  Google Scholar 

  • Cursino L, Mattos SVM, Silva NO, Chartone-Souza E, Nascimento AMA (2003) Measurement of volatilized mercury by a mini-system: a simple, reliable and reproducible technique. Bras Arch Biol Technol 46(4)

    Google Scholar 

  • Cuong TD, Obbard JP (2006) Metal speciation in coastal marine sediments from Singapore from Singapore using a modified BCR- sequential extraction procedure. Appl Geochem 21:1335–1346

    Article  CAS  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5(6):663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debela F, Arocena JM, Thring RW, Withcombe T (2010) Organic acid-induced release of lead from pyromorphite and its relevance to reclamation of Pb-contaminated soils. Chemosphere 80:450–456

    Article  CAS  PubMed  Google Scholar 

  • Debela F, Arocena JM, Thring RW, Withcombe T (2013) Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil. J Environ Manag 116:156–162

    Article  CAS  Google Scholar 

  • DeVolder PS, Brown SL, Hesterberg D, Pandya K (2003) Metal bioavailability and speciation in a wetland tailings repository amended with biosolids compost, wood ash, and sulfate. J Environ Qual 32(3):851–864

    Article  CAS  PubMed  Google Scholar 

  • de Lacerda LD, dos Santos AF, Marins RV (2007) Emissão de mercúrio para a atmosfera pela queima de gás natural no Brasil. Química Nova 30(2):366

    Article  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Metal-contaminated soils: remediation practices and treatment technologies. Pract Period Hazard Toxic Radioact Waste Manage 12(3):188–209

    Article  CAS  Google Scholar 

  • Elass K, Laachach A, Azzi M (2004) Three-stage sequential extraction procedure for metal partitioning in polluted soils and sediments. Ann Chim-Rome 94:325–332

    Article  CAS  Google Scholar 

  • El-Shahawi M, Bashammakh A, Orief M, Alsibaai A, Al-Harbi E (2014) Separation and determination of cadmium in water by foam column prior to inductively coupled plasma optical emission spectrometry. J Ind Eng Chem 20(1):308–314

    Article  CAS  Google Scholar 

  • Esslemont G (2000) Heavy metals in seawater, marine sediments and corals from the Townsville section, Great Barrier Reef Marine Park. Qld Mar Chem 71:215–231

    Article  CAS  Google Scholar 

  • Fang Y, Sun X, Yang W et al (2014) Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem 147(0):147–151. doi:http://dx.doi.org/10.1016/j.foodchem.2013.09.116

    Google Scholar 

  • Farmaki E, Thomaidis N (2008) Current status of the metal pollution of the environment of Greece- a review. Global nest Int J 10(3):366–375

    Google Scholar 

  • Feng XH, Zhai LM, Tan WF, Liu F, He JZ (2007) Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environ Pollut 147:366–373

    Article  CAS  PubMed  Google Scholar 

  • Formina M, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrob J 21:351–366

    Article  CAS  Google Scholar 

  • Friedlova M (2010) The influence of heavy metals on soil biological and chemical properties. Soil Water Res 5(1):21–27

    CAS  Google Scholar 

  • Fuentes E, Pinochet H, Potin-Gautier M, Graegori ID (2004) Fractionation and redox speciation of antimony in agricultural soils by hydride generation- -atomic fluorescence spectrometry and stability of Sb (III) and Sb (V) during extraction with different extractant solutions. J AOAC Int 87:60–67

    CAS  PubMed  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA et al (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Garau G, Castaldi P, Santona L, Deiana P, Melis P (2007) Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma 142:47–57

    Article  CAS  Google Scholar 

  • Ghani A (2010) Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zea maysL.). Iran J Toxicol 4(3):325–334

    Google Scholar 

  • Govil PK, Sorlie JE, Murthy NN, Sujatha D, Reddy GL, Rudolph-Lund K (2008). Soil contamination of heavy metals in the Katedan Industrial Development Area, Hyderabad, India. Environmental Monitoring Assessment 140 ((1–3)):313–323

    Google Scholar 

  • Govindasamy C, Arulpriya M, Ruban P, Francisca LJ, Ilayaraja A (2011) Concentration of heavy metals in seagrasses tissue of the Palk Strait, Bay of Bengal. Int J Environ Sci 2:145–153

    CAS  Google Scholar 

  • Granero S, Doming JL (2002) Levels of metals in soils of Alcalá de Henares, Spain: human health risks. Environ Int 28(3):159–164. doi:http://dx.doi.org/10.1016/S0160-4120(02)00024-7

    Google Scholar 

  • Gray C, Dunham S, Dennis P, Zhao F, McGrath S (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ Pollut 142:530–539

    Article  CAS  PubMed  Google Scholar 

  • Groppa M, Ianuzzo M, Rosales E, Vázquez S, Benavides M (2012) Cadmium modulates NADPH oxidase activity and expression in sunflower leaves. Biologia Plant 56(1):167–171

    Article  CAS  Google Scholar 

  • Gucel S, Ozturk M, Yucel E, Kadis C, Guvensen A (2009a) Studies on the trace metals in the soils and plants growing in the vicinity of copper mining area- Lefke, Northern Cyprus. Fresenius Environ Bull 18(3):360–368

    CAS  Google Scholar 

  • Gucel S, Kocbas F, Ozturk M (2009b) Metal bioaccumulation by barley in Mesaoria Plain alongside the Nicosiafamagusta Highway, Northern Cyprus. Fresenius Environ Bull 18(11):2034–2039

    CAS  Google Scholar 

  • Guevara-Riba A, Sahuquillo A, Rubio R, Rauret G (2004) Assessment of metal mobility in dredged harbour sediments from Barcelona. Spain Sci Total Environ 321:241–255

    Article  CAS  PubMed  Google Scholar 

  • Hakeem KR, Sabir M, Ozturk M, Mermut A (2015) Soil remediation and plants: prospects and challenges. Academic Press, Elsevier, London, Waltham, 724 pp

    Google Scholar 

  • Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326(1–3):1–31. doi:http://dx.doi.org/10.1016/j.scitotenv.2004.01.019

    Google Scholar 

  • Hamman S (2004) Bioremediation capabilities of white rot fungi. BI570 – review article. J Mol Biol 23(2):234–238

    Google Scholar 

  • Hang Zhou XZ, Zeng M, Liao B-H, Liu L, Yang W-T, Wu Y-M, Qiu Q-Y, Wang Y-J (2014) Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicol Environ Saf 101:226–232

    Article  PubMed  CAS  Google Scholar 

  • Hartley W, Edwards R, Lepp NW (2004) Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short-and long-term leaching tests. Environ Pollut 131:495–504

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam Md M, Bhowmik PC, Hossain Md A, Rahman MM, Prasad MNV, Ozturk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. Hindawi Publishing Corporation, BioMed Research International, Article ID 589341, pp:12

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Hakeem KR, Ozturk M, Fujita M (2015) Arsenic toxicity in plants and possible remediation. Chapter 16. In: Hakeem et al (eds) Soil remediation and plants: prospects and challenges, Academic Press, Elsevier, New York-Waltham, pp 433–501

    Google Scholar 

  • Hettiarachchi GM, Pierzynski GM, Ransom MD (2000) In situ stabilization of soil Pb using phosphorus and manganese oxide. Environ Sci Technol 34:4614–4619

    Article  CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331

    Article  PubMed  CAS  Google Scholar 

  • Huang SS, Liao QL, Hua M (2007) Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere 67(11):2148–2155. doi:http://dx.doi.org/10.1016/j.chemosphere.2006.12.043

    Google Scholar 

  • Issaro N, Besancon S, Bermond A (2010) Thermodynamic and kinetic study of the single extraction of mercury from soil using sodium-thiosulfate. Talanta 82(5):1659–1667

    Article  CAS  PubMed  Google Scholar 

  • Jang A, Kim INS (2000) Technical Note: Solidification and stabilization of Pb, Zn, Cd and Cu in tailing waste using cement and fly ash. Min Eng 13:1659–1662

    Article  CAS  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Jarzynska G, Falandysz J (2011) Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus)--consequences to human health. Environ Int 37(5):882–888. doi:10.1016/j.envint.2011.02.017

    Article  CAS  PubMed  Google Scholar 

  • Johri N, Jacquillet G, Unwin R (2010) Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23(5):783–792

    Article  CAS  PubMed  Google Scholar 

  • Joseph S, Camps-Arbestain M, Lin Y, Munroe P, Chia C, Hook J, Singh B (2010) An investigation into the reactions of biochar in soil. Soil Res 48:501–515

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin

    Book  Google Scholar 

  • Kasten-Jolly J, Pabello N, Bolivar VJ, Lawrence DA (2012) Developmental lead effects on behavior and brain gene expression in male and female BALB/cAnNTac mice. Neurotoxicology 33(5):1005–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katasonov ON, Fedotov PS, Karandashev VK, Spivakov BY (2005) Application of rotating coiled columns to the fractionation of soil particles and to the sequential extraction of heavy-metal species from silty, dusty, and sandy fractions. J Anal Chem 60:684–690

    Article  CAS  Google Scholar 

  • Keurentjes JJB, Angenent GC, Dicke M, van der Putten WH, de Ruiter PC, Struik PC et al (2011) Redefining plant systems biology: from cell to ecosystem. Trend Plant Sci 16:183–190

    Article  CAS  Google Scholar 

  • Khan MN, Wasim AA, Sarwar A, Rasheed MF (2011) Assessment of heavy metal toxicants in the roadside soil along the N-5, National Highway, Pakistan. Environ Monit Assess 182(1–4):587–595

    Article  CAS  PubMed  Google Scholar 

  • Khosravi F, Savaghebi GH, Farah BH (2009) Effect of Potassium chloride on Cd uptake by colza in a polluted soil. Water Soil J 23:28–35

    Google Scholar 

  • Khodadoust AP, Reddy KR, Maturi K (2004) Removal of nickel and phenanthrene from kaolin soil using different extractants. Environ Eng Sci 21(6):691–704

    Article  CAS  Google Scholar 

  • Kirkham M (2006) Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma 137(1):19–32

    Article  CAS  Google Scholar 

  • Kirpichtchikova TA, Manceau A, Spadini L, Panfili F, Marcus MA, Jacquet T (2006) Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermody namic modeling. Geochim Cosmochim Acta 70(9):2163–2190

    Article  CAS  Google Scholar 

  • Knopf B, Konig H (2010) Biomethylation of heavy metals in soil and terrestrial invertebrates: soil heavy metals. Springer, Berlin/Heidelberg, pp 315–328

    Book  Google Scholar 

  • Knox A, Seaman J, Mench M, Vangronsveld J (2001) Remediation of metal-and radionuclides-contaminated soils by in situ stabilization techniques. In: Iskandar IK (ed) Environmental restoration of metals-contaminated soil. Lewis Publishers, Boca Raton, pp 21–61

    Google Scholar 

  • Komarek M, Vanˇek A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides – a review. Environ Pollut 172:9–22

    Article  CAS  PubMed  Google Scholar 

  • Kookana R, Sarmah A, Van Zwieten L, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 112:103–143

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – A review. Waste Manag 28:215–225

    Article  CAS  PubMed  Google Scholar 

  • Lan Z, Bi KS, Chen XH (2014) Ligustrazine attenuates elevated levels of indoxyl sulfate, kidney injury molecule-1 and clusterin in rats exposed to cadmium. Food Chem Toxicol 63:62–68

    Article  CAS  PubMed  Google Scholar 

  • Lee I-S, Kim OK, Chang Y-Y, Bae B, Kim HH, Baek KH (2002) Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range. J Biosci Bioeng 94(5):406–411. doi:http://dx.doi.org/10.1016/S1389-1723(02)80217-1

    Google Scholar 

  • Lemire J, Mailloux R, Appanna VD (2008) Zinc toxicity alters mitochondrial metabolism and leads to decreased ATP production in hepatocytes. J Appl Toxicol 28(2):175–182

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Shohag MJ, Yang X (2014) Role of sulfur assimilation pathway in cadmium hyperaccumulation by Sedum alfredii Hance. Ecotoxicol Environ Saf 100:159–165. doi:10.1016/j.ecoenv.2013.10.026

    Article  CAS  PubMed  Google Scholar 

  • Li YM, Chaney RL, Siebielec G, Kerschner BA (2000) Response of four turf grass cultivars to limestone and biosolids-compost amendment of a zinc and cadmium contaminated soil at Palmerton. Pa J Environ Qual 29:1440–1447

    Article  CAS  Google Scholar 

  • Li Z, Feng X, Li G (2013) Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of Central China. Environ Pollut 182:408–416

    Article  CAS  PubMed  Google Scholar 

  • Li C, Jiang W, Ma N (2014) Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Bioresour Technol 155(0):116–121. doi:http://dx.doi.org/10.1016/j.biortech.2013.12.098

    Google Scholar 

  • Liu XM, Wu QT, Banks MK (2005) Effect of simultaneous establishment of Sedum alfridii and Zea mays on heavy metal accumulation in plants. Int J Phytoremediation 7:43–53

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Yang C, Xie W, Xia C, Fan P (2012) The effects of cadmium on germination and seedling growth of suaeda salsa. Procedia Environmental Sciences 16(0):293–298. doi:http://dx.doi.org/10.1016/j.proenv.2012.10.041

    Google Scholar 

  • Lohman K, Seigneur C, Gustin M, Lindberg S (2008) Sensitivity of the global atmospheric cycle of mercury to emissions. Appl Geochem 23(3):454–466

    Article  CAS  Google Scholar 

  • Lone MI, He ZL, Stoffella PJ, Xiao EY (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9(3):210–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo LMY, Zhang S, Wei D, Zhu YG (2009) Inventory of trace element inputs to agricultural soils in China. J Environ Manag 90(8):2524–2530

    Article  CAS  Google Scholar 

  • Mahavi AH, Mesdaghinia AR, Naghipoor D (2005) Comparison of heavy metals extractions efficiency in contaminated soils by various concentration of EDTA. Pak J Bio Sci 8:1081–1085

    Article  Google Scholar 

  • Manecki M, Maurice PA (2008) Siderophore promoted dissolution of pyromorphite. Soil Sci 173:821–830

    Article  CAS  Google Scholar 

  • Martínez-Juárez VM, Cárdenas-González JF, Torre-Bouscoulet ME, Acosta-Rodríguez I (2012) Biosorption of mercury (II) from aqueous solutions onto fungal biomass. Bioinorg Chem Appl 2012:156190. doi:10.1155/2012/156190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathialagan T, Viraraghavan T (2002) Adsorption of cadmium from aqueous solutions by perlite. J Hazard Mater 94(3(14)):291–303

    Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizoshphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    Article  CAS  Google Scholar 

  • Meers E, Slycken SV, Adriaensen K, Ruttens A, Vangronsveld J, Laing GD, Witters N, Thewys T, Tack FMG (2010) The use of bio-energy crops (Zea mays) for ‘phytoremediation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    Article  CAS  PubMed  Google Scholar 

  • Mertens J, Degryse F, Springael D, Smolders E (2007) Zinc toxicity to nitrification in soil and soilless culture can be predicted with the same biotic ligand model. Environ Sci Technol 41(8):2992–2997

    Article  CAS  PubMed  Google Scholar 

  • Micaroni R, Bueno M, WdF JARDIM (2000) Compostos de mercúrio. Revisão de métodos de determinação, tratamento e descarte. Química Nova 23(4):487–495

    Article  Google Scholar 

  • Milovanović I, Brčeski I, Stajić M, Korać A, Vukojević J, Knežević A (2014) Potential of pleurotus ostreatus mycelium for selenium absorption. Scientific World Journal 2014:681834. doi:10.1155/2014/681834

    PubMed  PubMed Central  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653. doi:http://dx.doi.org/10.1016/j.biotechadv.2011.04.006

    Google Scholar 

  • Mishra M, Acharya UR (2004) Protective action of vitamins on the spermatogenesis in lead-treated Swiss mice. J Trace Elem Med Biol 18(2):173–178

    Article  CAS  PubMed  Google Scholar 

  • Miyata N, Tani Y, Sakata M, Iwahori K (2007) Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104:1–8

    Article  CAS  PubMed  Google Scholar 

  • Mohsenzadeh F, Shahrokhi F (2014) Biological removing of Cadmium from contaminated media by fungal biomass of Trichoderma species. J Environ Health Sci Eng 12:102. doi:10.1186/2052-336X-12-102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moradi SA, Moghaddam PR, Koocheki AR, Danesh S, Fotovat A (2012) Effect of cadmium and lead on quantitative and essential oil traits of peppermint (Mentha piperita L.). Not Sci Biol 4(4):101–109

    Google Scholar 

  • Moreno FN, Anderson CW, Stewart RB, Robinson BH (2005) Mercury volatilisation and phytoextraction from base-metal mine tailings. Environ Pollut 136(2):341–352

    Article  CAS  PubMed  Google Scholar 

  • Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere 55:431–442

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8: 199e216 8, 199e216

    Google Scholar 

  • O’Dell R, Silk W, Green P, Claassen V (2007) Compost amendment of Cu–Zn mine spoil reduced toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn.). Environ Pollut 148:115–124

    Article  PubMed  CAS  Google Scholar 

  • Ok YS, Lee H, Jung J, Song H, Chung N, Lim S (2004) Chemical characterization and bioavailability of cadmium in artificially and naturally contaminated soils. Agri Chem Biotech 47:143–146

    CAS  Google Scholar 

  • Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102(3):157–161. doi:http://dx.doi.org/10.1263/jbb.102.157

    Google Scholar 

  • Ozturk M (2010a) Natural plant systems in the renovation of wastewaters (Part I). Refresher course on “Trace elements in the environment: contamination cleanup to phytoproducts”, June 11–17, Istanbul-Turkey

    Google Scholar 

  • Ozturk M (2010b) Natural plant systems in the renovation of wastewaters (Part II). Refresher course on “trace elements in the environment: contamination cleanup to phytoproducts”, June 11–17, Istanbul-Turkey.

    Google Scholar 

  • Ozturk M, Celik A, Yarci C, Aksoy A, Feoli E (2002) An overview of plant diversity, land use and degradation in the Mediterranean region of Turkey. Environ Manag Health 13(5):442–449

    Article  Google Scholar 

  • Ozturk M, Ozcelik H, Sakcali MS, Guvensen A (2004) Land degradation problems in the euphrates basin. Turkey Environews 10(3):7–9

    Google Scholar 

  • Ozturk M, Yucel E, Gucel S, Sakcali S, Aksoy A (2008) Plants as biomonitors of trace elements pollution in soil. In: Prasad MNV (ed) Trace elements: environmental contamination, nutritional benefits and health implications, Chapter 28, Wiley, USA, pp 723–744

    Google Scholar 

  • Ozturk M, Sakcali S, Gucel S, Tombuloğlu H (2010) Boron and plants. In: Ashraf et al (ed) Plant adaptation & phytoremediation, Springer, Part 2, New York, USA, pp 275–311

    Google Scholar 

  • Ozturk M, Mermut A, Celik A (2011a) Land degradation, urbanisation, land use & environment. NAM S. & T, Delhi, 445 pp

    Google Scholar 

  • Ozturk M, Okmen M, Guvensen A, Celik A, Gucel S (2011b) Land degradation, urbanisation and biodiversity in the Gediz Basin-Turkiye. In: Ozturk et al (eds) Urbanisation, land use, land degradation and environment, NAM proceedings, Daya Publishing House, Delhi, pp 74–93

    Google Scholar 

  • Ozturk M, Memon AR, Gucel S, Sakcali MS (2012) Brassicas in Turkey and their possible role in the phytoremediation of degraded habitats. In: Anjum NA (ed) The plant family Brassicaceae: contribution towards phytoremediation, vol 21, Environmental pollution book series. Springer, New York, pp 265–288

    Chapter  Google Scholar 

  • Ozturk M, Ashraf M, Aksoy A, Ahmad MSA (eds) (2015a) Phytoremediation for green energy. Springer Science + Business Media, New York, 191 pp

    Google Scholar 

  • Ozturk M, Ashraf M, Aksoy A, Ahmad MSA (eds) (2015b) Plants, pollutants & remediation. Springer Science + Business Media, New York, 407 pp

    Google Scholar 

  • Oskarsson A, Widell A, Olsson IM, Grawe KP (2004) Cadmium in food chain and health effects in sensitive population groups. BioMetals 17(5):531–534

    Article  CAS  PubMed  Google Scholar 

  • Pacyna JM, Pacyna EG, Aas W (2009) Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. Atmos Environ 43(1):117–127

    Article  CAS  Google Scholar 

  • Park JH, Bolan NS, Chung JW, Naidu R (2011a) Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils. J Environ Monit 13:2234–2242

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T (2011b) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451

    Article  CAS  Google Scholar 

  • Park JH, Bolan NS, Megharaj M, Naidu R (2011c) Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils. Sci Total Environ 409:853–860

    Article  CAS  PubMed  Google Scholar 

  • Pempkowiak J, Sikora A, Biernacka E (1999) Speciation of heavy metals in marine sediments vs their bioaccumulation by mussels. Chemosphere 39:313–321

    Article  CAS  PubMed  Google Scholar 

  • Perez J (2012) The soil remediation industry in Europe: the recent past and future perspectives. pp. 2–22.

    Google Scholar 

  • Perminova IV, Hatfield K (2005) Remediation chemistry of humic substances: theory and implications for technology. In: Perminova IV, Hertkorn N, Hatfield K (eds) Use of humic substances to remediate polluted environments: from theory to practice, NATO science series: IV. Earth and environmental sciences, vol 5, Springer, Dordrecht, pp 3–36

    Google Scholar 

  • Pietrzak U, Uren N (2011) Remedial options for copper-contaminated vineyard soils. Soil Res 49:44–55

    Article  CAS  Google Scholar 

  • Porter SK, Scheckel KG, Impellitteri CA, Ryan JA (2004) Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg. Crit Rev Environ Sci Technol 34:495–604

    Article  CAS  Google Scholar 

  • Pueyo M, Sastre J, Hernández E, Vidal M, López-Sánchez JF, Rauret G (2003) Prediction of trace element mobility in contaminated soils by sequential extraction. J Environ Qual 32:2054–2066

    Article  CAS  PubMed  Google Scholar 

  • Purkayastha D, Mishra U, Biswas S (2014) A comprehensive review on Cd(II) removal from aqueous solution. J Water Process Eng 2(0):105–128 doi:http://dx.doi.org/10.1016/j.jwpe.2014.05.009

    Google Scholar 

  • Rabindra FB, Sanghwa O, Sik SW (2012) Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment. Ecotoxicol Environ Saf 80:299–307

    Article  CAS  Google Scholar 

  • Rafiq MT, Aziz R, Yang X (2014) Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicol Environ Saf 103:101–107

    Article  CAS  PubMed  Google Scholar 

  • Rahmani A, Mousavi HZ, Fazli M (2010) Effect of nanostructure alumina on adsorption of heavy metals. Desalination 253:94–100

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, Ma LQ, Srivastava M (2006) Arsenic hyperaccumulating ferns and their application to phytoremediation of arsenic contaminated sites. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology, vol 3, Advances and topical issues. Global Science Books, Takamatu, pp 305–311

    Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    Article  CAS  PubMed  Google Scholar 

  • Reid BJ, MacLeod CJA, Lee PH, Morriss AWJ, Stokes JD, Semple KTA (2001) Simple 14C-respirometric method for assessing microbial catabolic potential and contaminant bioavailability. FEMS Microbiol Lett 196:141–146

    Article  CAS  PubMed  Google Scholar 

  • Robson T, Braungardt C, Rieuwerts J, Worsfold P (2014) Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering. Environ Pollut 184:283–289

    Article  CAS  PubMed  Google Scholar 

  • Robinson BH, Banuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266

    Article  CAS  Google Scholar 

  • Sabir M, Waraich EA, Hakeem KR, Ozturk M, Ahmad HR, Shahid M (2015) Phytoremediation: mechanisms and adaptations. Chapter 4. In: Hakeem et al (eds) Soil remediation and plants: prospects and challenges. Academic Press, Elsevier, New York-USA, pp 85–105

    Google Scholar 

  • Sang-Hwan L, Jin-Soo L, Jeong CY, Jeong-Gyu K (2009) In situ stabilization of cadmium, lead, and zinc-contaminated soil using various amendments. Chemosphere 77:1069–1075

    Article  CAS  Google Scholar 

  • Semenzin E, Critto A, Carlon C, Rutgers M, Marcomini A (2007) Development of a site-specific ecological risk assessment for contaminated sites: part II. A multicriteria based system for the selection of bioavailability assessment tools. Sci Total Environ 379:34–45

    Article  CAS  PubMed  Google Scholar 

  • Scragg A (2006) Environmental biotechnology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran A, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214

    Article  Google Scholar 

  • Shi W-J, Menn F-M, Xu T et al (2014) C60 reduces the bioavailability of mercury in aqueous solutions. Chemosphere 95:324–328

    Article  CAS  PubMed  Google Scholar 

  • Silveira ML, Alleoni LRF, O’Connor GA, Chang AC (2006) Heavy metal sequential extraction methods – A modification for tropical soils. Chemosphere 64:1929–1938

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Kalamdhad AS (2013) Effects of lime on bioavailability and leachability of heavy metals during agitated pile composting of water hyacinth. Bioresour Technol 138:148–155

    Article  CAS  PubMed  Google Scholar 

  • Sobolev D, Begonia MF (2008) Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 5(5):450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soumia A, Muhammad H, Georges M, Jean-Cluad R (2005) Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere 59:801–810

    Article  CAS  Google Scholar 

  • Sugasini A, Rajagopal K, Banu N (2014) A study on biosorption potential of aspergillus sp. of tannery effluent. Adv Biosci Biotechnol 5:853–860

    Article  CAS  Google Scholar 

  • The National People’s Congress of the People’s Republic of China, The Ministry of Environmental Protection; The Ministry of Land and Resources and The National People’s Congress of the People’s Republic of China; joint report on the national soil contamination survey 2015: http://www.mep.gov.cn/gkml/hbb/qt/201404/t20140417_270670, http://www.mlr.gov.cn/xwdt/jrxw/201211/t20121101_1152706, http://www.npc.gov.cn/npc/zhibo/zzzb22/2011-10/25/content_1676505

  • Tica D, Udovic M, Lestan D (2011) Immobilization of potentially toxic metals using different soil amendments. Chemosphere 85:577–583

    Article  CAS  PubMed  Google Scholar 

  • Topolska J, Borowicz P, Manecki M, Bajda T, Kaschabek S, Merkel BJ (2013) The effect of gluconic acid secretions by phosphatase solubilizing pseudomonas putida bacteria on dissolution of pyromorphite Pb5 (PO4)3Cl and Pb remediation. Ann Soc Geol Pol 83:343–351

    Google Scholar 

  • Uchimiya M, Chang S, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441

    Article  CAS  PubMed  Google Scholar 

  • UNEP (United Nations Environment Programme) (2008) Interim review of scientific information on lead. Version of March 2008

    Google Scholar 

  • Ure AM, Quevauviller P, Muntau H, Griepink B (1993) Int J Environ Anal Chem 51:135–151

    Article  CAS  Google Scholar 

  • US ATSDR (United States Agency for Toxic Substances and Disease Registry) (2007) Toxicological profile for lead. U.S. Department of Health and Human Services. 1–582

    Google Scholar 

  • US EPA (U.S. Environmental Protection Agency) (2004) IRIS integrated risk information system, lead and compounds (inorganic) (CASRN 7439-92-1). Available from http://www.epa.gov/ncea/iris/subst/0277.htm#noncar

  • US EPA (U.S. Environmental Protection Agency) (2009) Guidance manual for the integrated exposure uptake biokinetic model for children. Publication number 9285.7-215-1, EPA 540-R-93-081, PB93-963510. February 1994. Version 1.1.

    Google Scholar 

  • Usero J, Gamero M, Morrillo J, Gracia I (1998) Comparative study of the sequential extraction procedures for metals in marine sediments. Environ Int 24:487–496

    Article  CAS  Google Scholar 

  • Voglara GE, Lěstan D (2010) Solidification/stabilisation of metals contaminated industrial soil from former Zn smelter in Celje, Slovenia, using cement as a hydraulic binder. J Hazard Mater 178:926–933

    Google Scholar 

  • Von Storch H, Costa-Cabral M, Hagner C (2003) Four decades of gasoline lead emissions and control policies in Europe: a retrospective assessment. Sci Total Environ 311(1):151–176

    Article  CAS  Google Scholar 

  • Wahid A, Ghani A, Javed F (2008) Effect of cadmium on photosynthesis, nutrition and growth of mungbean. Agron Sustain Dev 28(2):273–280

    Article  CAS  Google Scholar 

  • Walraven N, Van OS BJ, Klaver GT, Middelburg JJ, Davies GR (2014) The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands. Sci Total Environ 472:888–900. doi:10.1016/j.scitotenv.2013.11.110

    Article  CAS  PubMed  Google Scholar 

  • Wepener V, Vermeulen LA (2005) A note on the concentrations and bioavailability of selected metals in sediments of Richards Bay Harbour, South Africa. Water SA 31:589–595

    CAS  Google Scholar 

  • WHO (2011) Evaluation of certain food additives and contaminants: seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series 960 http://whqlibdoc.who.int/trs/WHOTRS960eng.pdf

  • WHO (2000) Safety evaluation of certain food additives and contaminants. WHO food additives series 44: Lead. Available from http://www.inchem.org/documents/jecfa/jecmono/v44jec12.htm

  • Wong CSC, Li XD (2004) Pb contamination and isotopic composition of urban soils in Hong. Kong Sci Total Environ 319:185–195

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20

    Article  Google Scholar 

  • Wu P, Li C, Chen J, Zheng C, Hou X (2012) Determination of cadmium in biological samples: an update from 2006 to 2011. Appl Spectrosc Rev just-accep(just-accep) doi:10.1080/05704928.2012.665401

    Google Scholar 

  • Xia HP (2004) Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land. Chemosphere 54:345–353

    Article  CAS  PubMed  Google Scholar 

  • Yuan CG, Shi JB, He B, Liu JF, Liang LN (2004) Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ Int 30:769–783

    Article  CAS  PubMed  Google Scholar 

  • Zakir HM, Shikazono N (2011) Environmental mobility and geochemical partitioning of Fe, Mn, Co, Ni and Mo in sediments of an urban river. J Environ Chem Ecotoxicol 3:116–126

    CAS  Google Scholar 

  • Zarei M, Hempel S, Wubet T (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158(8):2757–2765. doi:http://dx.doi.org/10.1016/j.envpol.2010.04.017

    Google Scholar 

  • Zhang M, Wang M, Xuebao T (2003) Potential leachability of heavy metal in urban soils from Hangzhou City. Acta Pedologica Sinica 40:915–920

    CAS  Google Scholar 

  • Zhang X, Yang L, Li Y, Li H, Wang W, Ye B (2012) Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ Monit Assess 184(4):2261–2273

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Liu X, Xu J, Selim HM (2010) Heavy metal contaminations in a soil–rice system: Identification of spatial dependence in relation to soil properties of paddy fields. J Hazard Mater 181(1–3):778–787. doi:http://dx.doi.org/10.1016/j.jhazmat.2010.05.081

    Google Scholar 

  • Zhou H, Zhou X, Zeng M (2014) Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicol Environ Saf 101(0):226–232. doi: http://dx.doi.org/10.1016/j.ecoenv.2014.01.001

    Google Scholar 

  • Zorpas A, Constantinides T, Vlyssides A, Haralambous I, Loizidou M (2000) Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresour Technol 72:113–119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahar Amanullah or Münir Öztürk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amanullah, M. et al. (2016). Soil Amendments for Heavy Metal Immobilization Using Different Crops. In: Hakeem, K., Akhtar, J., Sabir, M. (eds) Soil Science: Agricultural and Environmental Prospectives. Springer, Cham. https://doi.org/10.1007/978-3-319-34451-5_17

Download citation

Publish with us

Policies and ethics