Skip to main content

Soil Microflora – An Extensive Research

  • Chapter
  • First Online:
Book cover Soil Science: Agricultural and Environmental Prospectives

Abstract

Soil is the most complicated biomaterial present on earth. It is composed of a variety of substances and provides a habitat to various organisms. Different chemical reactions take place in soil that ensures the sustainability of life. Microorganisms including bacteria, fungi, actinomyces and algae are widely distributed in soil. These natural micro flora have several advantages. They contribute to the growth and development of plants, decomposition of organic materials, nutrient cycling, soil nitrification, sustenance of pedological system and production of bioactive compounds. Soil fungi develop mutualistic associations with plants and increase their surface area for absorption. Rhizosphere of soil, the area in which micro flora is present, is rich not only in diverse micro flora but also plant roots and nutrients. Soil pollution and anthropogenic activities used for higher yield of agricultural crops negatively affect the soil micro flora. Pesticides kill micro flora and reduce soil biodiversity. The focus of this chapter is on the advantages of natural flora of soil and various factors causing their degradation. The chapter also sheds light on the changes in micro floral communities due to changes in environment. Towards the end, the future perspectives in which soil micro flora can be used for further benefit of mankind have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali N, Dashti N, Al-Mailem D, Eliyas M, Radwan S (2012) Indigenous soil bacteria with the combined potential for hydrocarbon consumption and heavy metal resistance. Environ Sci Poll Res 19(3):812–820

    Article  CAS  Google Scholar 

  • Archana J, Thilo E, Ruth F, Philippe B, Wilfred O (2015) Quantification of spatial distribution and spread of bacteria in soil at microscale. EGU General Assembly 2015. Vienna, Austria. Id: 15420

    Google Scholar 

  • Bera S, Ghosh R (2013a) Soil micro flora and weed management as influenced by atrazine 50 % WP in sugarcane. Univ J Agric Res 1(2):41–47

    CAS  Google Scholar 

  • Bera S, Ghosh RK (2013b) Soil physico-chemical properties and micro flora as influenced by bispyribac sodium 10 % SC in transplanted kharif rice. Rice Sci 20(4):298–302

    Article  Google Scholar 

  • Bérrard A, Ruy S, Coronel A, Toussaint B, Czarnes S, Legendre L, Doussan C (2015) Rhizosphere: a leverage for tolerance to water deficits of soil micro flora?. EGU General Assembly 2015. In Vienna, Austria. Id: 9481

    Google Scholar 

  • Bhatt M, Patel S, Prajapti P, Jasrai YT (2015) Isolation and identification of soil micro flora of national parks of Gujarat, India. Int J Curr Microbiol Appl Sci 4(3):421–429

    Google Scholar 

  • Burke DJ (2015) Effects of annual and inter-annual environmental variability on soil fungi associated with an old-growth, temperate hardwood forest. FEMS Microbiol Ecol. Fiv053

    Google Scholar 

  • Chaudhry V, Dang HQ, Tran NQ, Mishra A, Chauhan PS, Gill SS, Nautiyal CS, Tuteja N (2012) Impact of salinity-tolerant MCM6 transgenic tobacco on soil enzymatic activities and the functional diversity of rhizosphere microbial communities. Res Microbiol 163(8):511–517

    Article  CAS  PubMed  Google Scholar 

  • Danaboyin a KSB, Sivakumar K (2013) Distribution of heterocystous and non heterocystous soil micro flora and related physico- chemical parameters of the paddy fields of Guntur District, Andhra Pradesh. J Multidiscip Sci Res 1(3):01–08

    Google Scholar 

  • Das R, Ghosh RK, Bera S, Poddar R (2014) Bioefficacy studies of chlorimuron ethyl 25 % WP in transplanted rice and its effects on soil micro flora in inceptisol of West Bengal. J Crop Weed 10(2):350–354

    Google Scholar 

  • Deslippe JR, Hartmann M, Simard SW, Mohn WW (2012) Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol Ecol 82:303–315

    Article  CAS  PubMed  Google Scholar 

  • Duponnois R, Baudoin E, Thioulouse J, Hafidi M, Galiana A, Lebrun M, Prin Y (2012) The impact of mycorrhizosphere bacterial communities on soil biofunctioning in tropical and mediterranean forest ecosystems. In: Bacteria in agrobiology: plant probiotics, Springer Berlin Heidelberg. pp 79–95

    Google Scholar 

  • Fang Y, JunLing T, PanPan Y, Hong F, GuangSheng H, XuDong C, YuSheng L, ZhiYuan T, GuiXiang P (2014) Effects of inoculant of photosynthetic bacteria on tomato quality, soil fertility and soil microbial characteristics. J South Chin Agric Univ 35(1):49–54

    Google Scholar 

  • Habibnia S, Nasab MR, Heidarieh P, Bafghi MF, Pourmand MR, Eshraghi SS (2015) Phenotypic characterization of Nocardia spp. isolated from Iran soil micro flora. Int J Environ Health Eng 4(1):20–24

    Google Scholar 

  • Hakeem KR, Akhtar MS, Abdullah SNA (2016) Plant, soil and microbes – vol 1, implications in crop science. Springer International Publishing AG, Gewerbestrasse 11, 6330 Cham, Switzerland. 366 pp

    Google Scholar 

  • Helfrich M, Ludwig B, Thoms C, Gleixner G, Flessa H (2015) The role of soil fungi and bacteria in plant litter decomposition and macroaggregate formation determined using phospholipid fatty acids. Appl Soil Ecol 96:261–264

    Article  Google Scholar 

  • Huang Z, Wan X, He Z, Yu Z, Wang M, Hu Z, Yang Y (2013) Soil Biol Biochem 62:68–75

    Article  CAS  Google Scholar 

  • Imran M, Arshad M, Khalid A, Kanwal S, Crowley DE (2014) Perspectives of rhizosphere micro flora for improving Zn bioavailability and acquisition by higher plants. Int J Agric Biol 16:653–662

    CAS  Google Scholar 

  • Jagtap GP (2012) Effect of agrochemicals on micro flora in soybean rhizospheric soil. Sci J Microbiol 1(2):55–62

    Google Scholar 

  • Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB (2011) Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol Biochem 43(10):2184–2193

    Article  CAS  Google Scholar 

  • Jin W, YinLi B, YanXu Z, TianCai H, Lang Q, ShuLin C (2014) Effects of Arbuscular mycorrhiza on soil microorganisms and enzyme activities in disturbed coal mine areas. J South Agric 45(8):1417–1423

    Google Scholar 

  • Jin Z, Li Z, Li Q, Hu Q, Yang R, Tang H, Li M, Huang B, Zhang J, Li G (2015) Canonical correspondence analysis of soil heavy metal pollution, micro flora and enzyme activities in the Pb–Zn mine tailing dam collapse area of Sidi village, SW China. Environ Earth Sci 73(1):267–274

    Article  CAS  Google Scholar 

  • Li X, Mu Y, Cheng Y, Liu X, Nian H (2013) Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiol Plant 35(4):1113–1119

    Article  CAS  Google Scholar 

  • Lin Z, Zhen Z, Wu Z, Yang J, Zhong L, Hu H, Luo C, Bai J, Li Y, Zhang D (2016) The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils. J Hazard Mater 301:35–45

    Article  CAS  PubMed  Google Scholar 

  • Locatellia A, Spor A, Jolivet C, Piveteau P, Hartmann A (2013) Biotic and abiotic soil properties influence survival of Listeria monocytogenes in soil. PLoS One 8(10):e75969

    Article  Google Scholar 

  • Lorch JM, Lindner DL, Gargas A, Muller LK, Minnis AM, Blehert DS (2012) A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 12:207

    Google Scholar 

  • Lu M, Xu K, Chen J (2013) Effect of pyrene and cadmium on microbial activity and community structure in soil. Chemosphere 91(4):491–497

    Article  CAS  PubMed  Google Scholar 

  • Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93(4)

    Google Scholar 

  • Mao N, Zhang Z, Zhang X, Zhang F, Zhao H, Xi Q (2013) On the effects of ultrasonic treatment of soil samples on actinomyces and bacteria isolation. J Longdong Univ 3:012

    Google Scholar 

  • Marathe SA, Sayyed RZ, Somani VJ (2012) Impact of Bt Cotton cultivation on bacterial soil micro flora in North Maharshtra. Int J Biotechnol Biosci 2(4):266–271

    Google Scholar 

  • Mary LCL, Sujatha R, Chozhaa AJ, Navas PMA (2015) Influence of organic manures (Biofertilizers) on soil microbial population in the rhizosphere of mulberry (Morus Indica L.). Int J Appl Sci Biotechnol 3(1):61–66

    Google Scholar 

  • Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89(4):917–930

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RJ, Hester AJ, Campbell CD, Chapman SJ, Cameron CM, Hewison RL, Potts JM (2012) Explaining the variation in the soil microbial community: do vegetation composition and soil chemistry explain the same or different parts of the microbial variation? Plant Soil 351(1):355–362

    Article  CAS  Google Scholar 

  • Na L, WeiMin Z, Bo L, ShouBo T, LongYing Z, Hui Z, Li Y (2014) Effects of grafting on the soil micro-ecological environment of tomato rhizosphere. Acta Agric Shanghai 30(5):6–10

    Google Scholar 

  • Osaigbovo AU, Law-Ogbomo KE, Agele SO (2013) Effects of spent engine oil polluted soil and organic amendment on soil chemical properties, micro-flora on growth and herbage of Telfairia Occidentalis (hook f). Bayero J Pure Appl Sci 6(1)

    Google Scholar 

  • Rajik M, Pathak SP, Biswas SK, Naresh P (2011) Effect of organic amendment on soil micro flora and soil borne diseases of potato. Ind Phytopathol 64(3)

    Google Scholar 

  • Savitha K, Raman DNS (2012) Isolation, identification, resistance profile and growth kinetics of chlorpyrifos resistant bacteria from agricultural soil of Bangalore. Res Biotechnol 3(2)

    Google Scholar 

  • Sethi BK, Pradhan S, Behera N, Sahoo SL (2015) Effect of cypermethrin, a pyrethroid insecticide on dynamics of soil micro flora. J Appl Biol Biotechnol 3(5):19–25

    Google Scholar 

  • Sharma MP, Buyer JS (2015) Comparison of biochemical and microscopic methods for quantification of arbuscular mycorrhizal fungi in soil and roots. Appl Soil Ecol 95:86–89

    Article  Google Scholar 

  • Sharma R, Raju NS (2013) Frequency and percentage occurrence of soil mycoflora in different crop fields at HD Kote of Mysore district. Int J Environ Sci 3(5):1569–1576

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3–4):339–353

    Article  Google Scholar 

  • Singh S, Gupta R, Sharma S (2015) Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiate. J Hazard Mater 291:102–110

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Scopa A, Dumontet S, Mazzatura A, Pasquale V (2012) Toxic effects of four sulphonylureas herbicides on soil microbial biomass. J Environ Sci Health Part B Pest Food Contam Agric Wastes 47(7):653–659

    Article  CAS  Google Scholar 

  • Sonia S, Saksham G (2013) Impact of pesticides and biopesticides on soil microbial biomass carbon. Univ J Environ Res Technol 3(2):326–330

    Google Scholar 

  • Sullivan TS, McBride MB, Thies JE (2013) Soil bacterial and archaeal community composition reflects high spatial heterogeneity of pH, bioavailable Zn, and Cu in a metalliferous peat soil. Soil Biol Biochem 66:102–109

    Article  CAS  Google Scholar 

  • Suneetha V, Khan ZA (2010) Actinomycetes: sources for soil enzymes. Soil Enzymol 22:259–269

    Article  Google Scholar 

  • Tang C (2012) Study on population structure of microorganism and their dynamics in continuous cropping tomato soil. J Anhui Agric Sci 36:052

    Google Scholar 

  • Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW (2014) A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol Monogr 84(1)

    Google Scholar 

  • Turrini A, Sbrana C, Giovannetti M (2015) Belowground environmental effects of transgenic crops: a soil microbial perspective. Res Microbiol 166(3):121–131

    Article  PubMed  Google Scholar 

  • Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. PNAS USA 111(42):15202–15207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandamme P, De Brandt E, Houf K, Salles JF, van Elsas JD, Spilker T, LiPuma JJ (2013) Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosphere soil. Int J Syst Evol Microbiol 63:4707–4718

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Pang H, Li Y, Zhao Y, Zhang J (2012) Effects of microbial fertilizer on soil micro flora and sunflower yield in saline soil. J Agro Environ Sci 11

    Google Scholar 

  • Wu K, Yuan S, Wang L, Shi J, Zhao J, Shen B, Shen Q (2014) Effects of bio-organic fertilizer plus soil amendment on the control of tobacco bacterial wilt and composition of soil bacterial communities. Biol Fertil Soils 50(6):961–971

    Article  Google Scholar 

  • Xia ZC, Kong CH, Wang P, Chen LC, Wang SL (2012) Characteristics of soil microbial community structure in Cunninghamia lanceolata plantation. Eur PMC 23(8):2135–2140

    CAS  Google Scholar 

  • Xu R, Li J, Kong W, Li C, Guo J, Hu G, Chen L, Li X (2013) Effect of soil types on quantity of soil microbe in Hubei Tobacco-growing Region. Hubei Agric Sci 1:019

    Google Scholar 

  • Yadav AM (2014) Comparative study of mycoflora of paddy field soil in bhandra district. Int J Life Sci A2:59–61

    Google Scholar 

  • Yang Y, Liu SW, Pan K, Wu FZ (2013) Effects of Chinese onion’s root exudates on cucumber seedlings growth and rhizosphere soil microorganisms. Eur PMC 24(4):1109–1117

    CAS  Google Scholar 

  • Yuan Y, Li M, Hu W, Zhang J, Zhao L, Li H (2011) Effect of biological organic fertilizer on tomato bacterial wilt and soil microorganism. J Agro Environ Sci 30(7):1344–1350

    CAS  Google Scholar 

  • Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FAO, Clark IM, McGrath SP, Hirsch PR, Triplett EW (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microbiol Ecol 69(2):395–406

    Article  CAS  Google Scholar 

  • Zhu P, Zhang X, Ren Z (2013) Effects of different fertilizer application on soil micro flora of continuous cropping watermelon. Northern Hortic 11

    Google Scholar 

  • Zubek S, Stefanowicz AM, Blaszkowski J, Niklińska M, Seidler-Łożykowska S (2012) Arbuscular mycorrhizal fungi and soil microbial communities under contrasting fertilization of three medicinal plants. Appl Soil Ecol 59:106–115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Gul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Imadi, S.R., Babar, M.M., Hasan, H., Gul, A. (2016). Soil Microflora – An Extensive Research. In: Hakeem, K., Akhtar, J., Sabir, M. (eds) Soil Science: Agricultural and Environmental Prospectives. Springer, Cham. https://doi.org/10.1007/978-3-319-34451-5_13

Download citation

Publish with us

Policies and ethics