TiO2 Thin Films on Fused Silica

  • John Callum AlexanderEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter details an investigation of the growth of TiO2 films on fused silica. The initial motivation to use an amorphous glass substrate was to reproduce anatase films with the (101) orientation as seen by other groups working on TiO2 for use as a transparent conductive oxide [1].


Fuse Silica Oxygen Pressure TiO2 Film Anatase Phase Substrate Heating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hitosugi, T., et al.: Fabrication of TiO2-based transparent conducting oxide films on glass by pulsed laser deposition. Jpn. J. Appl. Phys. 46, L86–L88 (2007)CrossRefGoogle Scholar
  2. 2.
    Osaka, A., Takao, S., Oda, K., Takada, J., Miura, Y.: The diffusion of sodium ions into tin oxide thin films from glass substrates. Mem. Fac. Eng. Okayama Univ. 24, 53–61 (1989)Google Scholar
  3. 3.
    Hitosugi, T., et al.: Electronic band structure of transparent conductor: Nb-doped anatase TiO2. Appl. Phys. Express 1, 111203 (2008)CrossRefGoogle Scholar
  4. 4.
    Hitosugi, T., et al.: Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate. Thin Solid Films 516, 5750–5753 (2008)CrossRefGoogle Scholar
  5. 5.
    Sanches, F.F., Mallia, G., Liborio, L., Diebold, U., Harrison, N.M.: Hybrid exchange density functional study of vicinal anatase TiO2 surfaces. Phys. Rev. B 89, 245309 (2014)CrossRefGoogle Scholar
  6. 6.
    Franklin, J.B., Downing, J.M., Giuliani, F., Ryan, M.P., McLachlan, M.A.: Building on soft foundations: New possibilities for controlling hybrid photovoltaic architectures. Adv. Energy Mater. 2, 528–531 (2012)CrossRefGoogle Scholar
  7. 7.
    Perron, H., et al.: Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations. Theor. Chem Acc. 117, 565–574 (2007)CrossRefGoogle Scholar
  8. 8.
    Yamamoto, S., Sumita, T., Miyashita, A.: Preparation of TiO2-anatase film on Si (001) substrate with TiN and SrTiO3 as buffer layers. J. Phys. Condens. Matter 13, 2875 (2001)CrossRefGoogle Scholar
  9. 9.
    Yang, H.G., et al.: Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets. J. Am. Chem. Soc. 131, 4078–4083 (2009)CrossRefGoogle Scholar
  10. 10.
    Swanepoel, R.: Determination of the thickness and optical-constants of amorphous-silicon. J. Phys. E Sci. Instrum. 16, 1214–1222 (1983)CrossRefGoogle Scholar
  11. 11.
    Arbiol, J., et al.: Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J. Appl. Phys. 92, 853 (2002)CrossRefGoogle Scholar
  12. 12.
    Trenczek-Zając, A., Rekas, M.: Electrical properties of Nb-doped titanium dioxide TiO2 at room temperature. Mater. Sci. Pol. 24 (2006)Google Scholar
  13. 13.
    DeSario, P.A., Graham, M.E., Gelfand, R.M., Gray, K.A.: The effect of Nb substitution on synthesis and photo-response of TiO2 thin films prepared by direct current magnetron sputtering. Thin Solid Films 519, 3562–3568 (2011)CrossRefGoogle Scholar
  14. 14.
    Furubayashi, Y., et al.: Novel transparent conducting oxide: Anatase TiNbO. Thin Solid Films 496, 157–159 (2006)CrossRefGoogle Scholar
  15. 15.
    Furubayashi, Y., et al.: A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 86, 252101 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations