Advertisement

Electrochemistry of TiO2—Rutile (110)

  • John Callum AlexanderEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter details the results of a series of experiments on Nb-doped and reduced (undoped) rutile (110) TiO2 single crystals. The structure of the chapter is outlined below, followed by summaries of both the experimental aims and results.

Keywords

Equivalent Circuit Space Charge Space Charge Region Capacitive Behaviour Charge Carrier Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Patel, M., Mallia, G., Liborio, L., Harrison, N.M.: Water adsorption on rutile TiO2 (110) for applications in solar hydrogen production: A systematic hybrid-exchange density functional study. Phys. Rev. B 86, 045302 (2012)CrossRefGoogle Scholar
  2. 2.
    Liborio, L., Harrison, N.: Thermodynamics of oxygen defective Magnéli phases in rutile: a first-principles study. Phys. Rev. B 77, 104104 EP (2008)Google Scholar
  3. 3.
    Kwon, D.-H., et al.: Atomic structure of conducting nanofilamentsin TiO. Nat. Nanotech 5, 148–153 (2010)CrossRefGoogle Scholar
  4. 4.
    Li, X., et al.: Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries. Electrochim. Acta 55, 5891–5898 (2010)CrossRefGoogle Scholar
  5. 5.
    Nelson, J.: The Physics of Solar Cells. Imperial College Press (2003)Google Scholar
  6. 6.
    Kennedy, J.H., Frese, K.W.: Flatband potentials and donor densities of polycrystalline α-Fe2O3 determined from Mott-Schottky plots. J. Electrochem. Soc. 125, 723–726 (1978)CrossRefGoogle Scholar
  7. 7.
    Hankin, A., Alexander, J.C., Kelsall, G.H.: Constraints to the flat band potential of hematite photo-electrodes. Phys. Chem. Chem. Phys. 16, 16176 (2014)CrossRefGoogle Scholar
  8. 8.
    Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T., Bisquert, J.: Water oxidation at hematite photoelectrodes: the role of surface states. J. Am. Chem. Soc. 134, 4294–4302 (2012)CrossRefGoogle Scholar
  9. 9.
    Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)CrossRefGoogle Scholar
  10. 10.
    Cronemeyer, D.C.: Electrical and optical properties of rutile single crystals. Phys. Rev. 87, 876 (1952)CrossRefGoogle Scholar
  11. 11.
    Ekuma CE, Bagayoko D (2010) Ab-initio Electronic and Structural Properties of Rutile Titanium Dioxide. http://arXivcond-mat.mtrl-sci:
  12. 12.
    Cardon, F., Gomes, W.P.: On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot. J. Phys. D Appl. Phys. 11, L63 (1978)CrossRefGoogle Scholar
  13. 13.
    Albery, W.J., Bartlett, P.N., Hamnett, A., Dare-Edwards, M.P.: The transport and kinetics of minority carriers in illuminated semiconductor electrodes. J. Electrochem. Soc. 128, 1492–1501 (1981)CrossRefGoogle Scholar
  14. 14.
    Sivula, K., Le Formal, F., Grätzel, M.: Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432–449 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations