Results: Plasmonic Photocurrent with AuNP-TiO2

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter presents the results of a series of experiments on doped and reduced rutile (110) TiO2 single crystals coated with gold nanoparticle (AuNP) arrays. The structure of the chapter is outlined immediately below, followed by summaries of the experimental aims and experimental results.

Keywords

Gold Nanoparticles Dark Current Localize Surface Plasmon Resonance Water Splitting Finite Difference Time Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nishijima, Y., Ueno, K., Yokota, Y., Murakoshi, K., Misawa, H.: Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a au-nanorods/TiO2 electrode. J. Phys. Chem. Lett. 1, 2031–2036 (2010)CrossRefGoogle Scholar
  2. 2.
    Nishijima, Y., Nigorinuma, H., Rosa, L., Juodkazis, S.: Selective enhancement of infrared absorption with metal hole arrays. Opt. Mater. Express 2, 1367–1377 (2012)CrossRefGoogle Scholar
  3. 3.
    Tian, Y., Tatsuma, T.: Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 16, 1810 (2004). doi: 10.1039/b405061d
  4. 4.
    Liu, Z., Hou, W., Pavaskar, P., Aykol, M., Cronin, S.B.: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111–1116 (2010)CrossRefGoogle Scholar
  5. 5.
    Centeno, A., Breeze, J., Ahmed, B., Reehal, H., Alford, N.: Scattering of light into silicon by spherical and hemispherical silver nanoparticles. Opt. Lett. 35, 76–78 (2009)CrossRefGoogle Scholar
  6. 6.
    García, M.A.: Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. 44, 283001 (2011)CrossRefGoogle Scholar
  7. 7.
    Abràmoff, M.D., Magalhães, P.J., Ram, S.J.: Image processing with ImageJ. Biophotonics Int. 11, 36–43 (2004)Google Scholar
  8. 8.
    Delcassian, D., et al.: Nanoscale ligand spacing influences receptor triggering in T cells and NK cells. Nano Lett. 13, 5608–5614 (2013)CrossRefGoogle Scholar
  9. 9.
    Ghosh, S.K., Pal, T.: Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–4862 (2007)CrossRefGoogle Scholar
  10. 10.
    Danckwerts, M., Novotny, L.: Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007)CrossRefGoogle Scholar
  11. 11.
    Tian, Y., Tatsuma, T.: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005)CrossRefGoogle Scholar
  12. 12.
    Beck, F.J., Verhagen, E., Mokkapati, S., Polman, A., Catchpole, K.R.: Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt. Express. 19, A146–A156 (2011)CrossRefGoogle Scholar
  13. 13.
    Fuke, N., et al.: Influence of TiO2/electrode interface on electron transport properties in back contact dye-sensitized solar cells. Sol. Energ. Mat. Sol. C. 93, 720–724 (2009)CrossRefGoogle Scholar
  14. 14.
    Mokkapati, S., Beck, F.J., Polman, A., Catchpole, K.R.: Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Appl. Phys. Lett. 95, 053115 (2009)CrossRefGoogle Scholar
  15. 15.
    Giugni, A., et al.: Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nature Nanotech 8, 845–852 (2013)CrossRefGoogle Scholar
  16. 16.
    Jenkins, R.D., Andrews, D.L.: Three-center systems for energy pooling: quantum electrodynamical theory. J. Phys. Chem. A 102, 10834–10842 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations