Advertisement

Principles of Photo-Electrochemical Cells

  • John Callum AlexanderEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter presents the relevant theory of the semiconductor-liquid interface and how it relates to photoelectrochemical redox processes such as water splitting, the principle application of interest in this thesis. The principles would also hold for other photoelectrochemical processes, such as oxidation of pollutants.

Keywords

Potential Drop Space Charge Region Depletion Layer Hydrogen Evolution Reaction Oxygen Evolution Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hankin, A., Alexander, J.C., Kelsall, G.H.: Constraints to the flat band potential of hematite photo-electrodes. Phys. Chem. Chem. Phys. 16, 16176 (2014)CrossRefGoogle Scholar
  2. 2.
    Pleskov, I.V., Gurevich, I. I.: Semiconductor Photoelectrochemistry. Consultant Bureau, New York (1986)Google Scholar
  3. 3.
    Morrison, S.R.: The Chemical Physics of Surfaces. Plenum Publishing Corporation, New York (1990)Google Scholar
  4. 4.
    Bard, A.J., Stratmann, M., Licht, S.: Encyclopedia of Electrochemistry, Semiconductor Electrodes and Photoelectrochemistry. Encyclopedia of electrochemistry. Wiley-VCH, Weinhiem (2002)Google Scholar
  5. 5.
    Butler, M.A., Ginley, D.S.: Correlation of photosensitive electrode properties with electronegativity. Chem. Phys. Lett. 47, 319–321 (1977)CrossRefGoogle Scholar
  6. 6.
    Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)CrossRefGoogle Scholar
  7. 7.
    Patel, M., Mallia, G., Liborio, L., Harrison, N.M.: Water adsorption on rutile TiO2 (110) for applications in solar hydrogen production: a systematic hybrid-exchange density functional study. Phys. Rev. B 86, 045302 (2012)CrossRefGoogle Scholar
  8. 8.
    Blomquist, J., Walle, L.E., Uvdal, P., Borg, A., Sandell, A.: Water dissociation on single crystalline Anatase TiO2 (001) studied by photoelectron spectroscopy. J. Phys. Chem. C 112, 16616–16621 (2008)CrossRefGoogle Scholar
  9. 9.
    Sumita, M., Hu, C., Tateyama, Y.: Interface water on TiO2 Anatase (101) and (001) surfaces: first-principles study with TiO2 slabs dipped in bulk water. J. Phys. Chem. C 114, 18529–18537 (2010)CrossRefGoogle Scholar
  10. 10.
    Walle, L.E., et al.: Mixed dissociative and molecular water adsorption on anatase TiO2 (101). J. Phys. Chem. C 115, 9545–9550 (2011)CrossRefGoogle Scholar
  11. 11.
    Bard, A.J., Parsons, R., Jordan, J.: Standard Potentials in Aqueous Solution. CRC Press, New York (1985)Google Scholar
  12. 12.
    Atkins, P., de Paula, J.: Atkins’ Physical Chemistry. Oxford University Press, Oxford (2010)Google Scholar
  13. 13.
    Bockris, J., Dandapani, B., Cocke, D., Ghoroghchian, J.: On the splitting of water. Int. J. Hydrogen Energy 10, 179–201 (1985)CrossRefGoogle Scholar
  14. 14.
    Larminie, J., Dicks, A.: Fuel Cell Systems Explained. Wiley, London (2003)Google Scholar
  15. 15.
    Reineke, R., Memming, R.: Comparability of redox reactions at n-and p-type semiconductor electrodes. 1. The quasi-fermi level concept. J. Phys. Chem. 96, 1310–1317 (1992)CrossRefGoogle Scholar
  16. 16.
    Pinson, W.E.: Measuring the quasi-fermi levels and flat band potential of an illuminated Au/n-GaAs0.6P0.4 anode. Surf. Sci. 101, 251–260 (1980)CrossRefGoogle Scholar
  17. 17.
    Archer, M.D., Nozik, A.J.: Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion. World Scientific Publishing, Singapore (2008)Google Scholar
  18. 18.
    Xu, Y., Schoonen, M.A.: The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000)CrossRefGoogle Scholar
  19. 19.
    Trasatti, S.: The absolute electrode potential: an explanatory note (Recommendations 1986). Pure Appl. Chem. 58, 955–966 (1986)Google Scholar
  20. 20.
    Gerischer, H.: Heterogeneous systems for solar energy conversion. Pure Appl. Chem, 1–19 (1980)Google Scholar
  21. 21.
    Nelson, J.: The Physics of Solar Cells. Imperial College Press, London (2003)Google Scholar
  22. 22.
    Vayssieres, L.: On Solar Hydrogen and Nanotechnology. Wiley, New York (2010)Google Scholar
  23. 23.
    Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)CrossRefGoogle Scholar
  24. 24.
    Toroker, M.C., et al.: First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. Phys. Chem. Chem. Phys. 13, 16644 (2011)CrossRefGoogle Scholar
  25. 25.
    Butler, M.A.: Photoelectrolysis and physical properties of the semiconducting electrode WO2. J. Appl. Phys. 48, 1914 (1977)CrossRefGoogle Scholar
  26. 26.
    Uosaki, K.: Effects of the Helmholtz Layer capacitance on the potential distribution at semiconductor/electrolyte interface and the linearity of the Mott-Schottky Plot. J. Electrochem. Soc. 130, 895 (1983)CrossRefGoogle Scholar
  27. 27.
    Kim, J.Y., Kim, D.-W., Jung, H.S., Hong, K.S.: Influence of anatase-rutile phase transformation on dielectric properties of sol-gel derived TiO2 thin films. Jpn. J. Appl. Phys. 44, 6148–6151 (2005)CrossRefGoogle Scholar
  28. 28.
    Cesar, I., Sivula, K., Kay, A., Zboril, R., Grätzel, M.: Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772–782 (2009)CrossRefGoogle Scholar
  29. 29.
    De Gryse, R., Gomes, W.P., Cardon, F., Vennik, J.: On the Interpretation of Mott-Schottky plots determined at semiconductor/electrolyte systems. J. Electrochem. Soc. 122, 711–712 (1975)CrossRefGoogle Scholar
  30. 30.
    Sato, N.: Electrochemistry at Metal and Semiconductor Electrodes. Elsevier, Boston (1998)Google Scholar
  31. 31.
    Kennedy, J.H., Frese, K.W.: Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125, 709–714 (1978)CrossRefGoogle Scholar
  32. 32.
    Cardon, F., Gomes, W.P.: On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot. J. Phys. D Appl. Phys. 11, L63 (1978)CrossRefGoogle Scholar
  33. 33.
    Gärtner, W.W.: Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84 (1959)CrossRefGoogle Scholar
  34. 34.
    Laser, D., Bard, A.J.: Semiconductor electrodes VII. Digital simulation of charge injection and the establishment of the space charge region in the absence and presence of surface states. J. Electrochem. Soc. 123, 1828–1832 (1976)CrossRefGoogle Scholar
  35. 35.
    Reiss, H.: Photocharacteristics for electrolyte-semiconductor junctions. J. Electrochem. Soc. 125, 937–949 (1978)CrossRefGoogle Scholar
  36. 36.
    Ong, C.K.: Design and performance of photo-electrochemical reactors with Fe2O3 photo-anodes for water splitting. (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations