Advertisement

Literature Review

  • John Callum Alexander
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter discusses the use of titanium dioxide as the active material in photo-electrochemical cells for the electrolysis of water, with the aim of producing a source of renewable hydrogen. Recent reports of sensitizing TiO2 to visible light using localized surface plasmon resonance (LSPR) on metal nanoparticles are discussed.

Keywords

Gold Nanoparticles Schottky Barrier TiO2 Film Localize Surface Plasmon Resonance Water Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    De-La-Rosa, Y.: World Population to 2300, pp. 1–254. United Nations Publications, NY (2004)Google Scholar
  2. 2.
    International Energy Agency: World Energy Outlook 2010 International Energy Agency, Paris (2010)Google Scholar
  3. 3.
    Solomon, S.: Climate Change 2007—The Physical Science Basis. Cambridge University Press, Cambridge (2007)Google Scholar
  4. 4.
    Britain, G.: Climate Change Act 2008. The Stationery Office, London (2008)Google Scholar
  5. 5.
    Boyle, G.: Renewable Energy. Oxford University Press, Oxford (2012)Google Scholar
  6. 6.
    Twidell, J. Weir, A.D. Renewable Energy Resources. Taylor & Francis, London (2006)Google Scholar
  7. 7.
    Larminie, J., Dicks, A.: Fuel Cell Systems Explained. Wiley, NY (2003)Google Scholar
  8. 8.
    Hoffmann, P.: Tomorrow’s Energy. MIT Press, Cambridge (2012)Google Scholar
  9. 9.
    Khaselev, O., Bansal, A.: High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrogen Energy. 1–6 (2000)Google Scholar
  10. 10.
    Pijpers, J.J., Winkler, M.T., Surendranath, Y., Buonassisi, T., Nocera, D.G.: Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst. Proc. Natl. Acad. Sci. U.S.A. 108, 10056–10061 (2011)CrossRefGoogle Scholar
  11. 11.
    Vayssieres, L.: On Solar Hydrogen and Nanotechnology. Wiley, NY (2010)Google Scholar
  12. 12.
    Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)CrossRefGoogle Scholar
  13. 13.
    Kudo, A.: Z-scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bull. 36, 32–38 (2011)CrossRefGoogle Scholar
  14. 14.
    Rajeshwar, K., McConnell, RD., Licht, S.: Solar Hydrogen Generation. Springer, New York (2008). doi: 10.1007/978-0-387-72810-0
  15. 15.
    Dresselhaus, M., Crabtree, G., Buchanan, M.: Basic Research Needs for the Hydrogen Economy. (2003)Google Scholar
  16. 16.
    Atkins, P., de Paula, J.: Atkins’ Physical Chemistry. Oxford University Press, Oxford (2010)Google Scholar
  17. 17.
    Osterloh, F.E., Parkinson, B.A.: Recent developments in solar water-splitting photocatalysis. MRS Bull. 36, 17–22 (2011)CrossRefGoogle Scholar
  18. 18.
    Cronemeyer, D.C.: Electrical and optical properties of rutile single crystals. Phys. Rev. 87, 876 (1952)CrossRefGoogle Scholar
  19. 19.
    Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)CrossRefGoogle Scholar
  20. 20.
    Liao, P., Toroker, M.C., Carter, E.A.: Electron transport in pure and doped hematite. Nano Lett. 11, 1775–1781 (2011)CrossRefGoogle Scholar
  21. 21.
    Tian, Y., Tatsuma, T.: Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 1810 (2004). doi: 10.1039/b405061d
  22. 22.
    Thimsen, E., Le Formal, F., Grätzel, M., Warren, S.C.: Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35–43 (2011)CrossRefGoogle Scholar
  23. 23.
    Xu, Y., Schoonen, M.A.: The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000)CrossRefGoogle Scholar
  24. 24.
    Archer, M.D., Nozik, A.J.: Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion. World Scientific Publishing, Singapore (2008)Google Scholar
  25. 25.
    Cesar, I., Kay, A., Gonzalez Martinez, J.A., Grätzel, M.: Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 128, 4582–4583 (2006)CrossRefGoogle Scholar
  26. 26.
    Mavroides, J.G., Kafalas, J.A., Kolesar, D.F.: Photoelectrolysis of water in cells with SrTiO3 anodes. Appl. Phys. Lett. 28, 241–243 (1976)CrossRefGoogle Scholar
  27. 27.
    Fujishima, A.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  28. 28.
    Boddy, P.J.: Oxygen evolution on semiconducting TiO2. J. Electrochem. Soc. 115, 199–203 (1968)CrossRefGoogle Scholar
  29. 29.
    Grimes, C.A., Varghese, O.K., Ranjan, S.: Light, Water, Hydrogen. Springer Science & Business Media, Berlin (2007)Google Scholar
  30. 30.
    Sivula, K., Le Formal, F., Graetzel, M.: WO3-Fe2O3 photoanodes for water scaffold splitting: a host. Guest Absorber Approach Chem. Mater. 21, 2862–2867 (2009)Google Scholar
  31. 31.
    Maeda, K., Domen, K.: Oxynitride materials for solar water splitting. MRS Bull. 36, 25–31 (2011)CrossRefGoogle Scholar
  32. 32.
    Nishijima, Y., Ueno, K., Yokota, Y., Murakoshi, K., Misawa, H.: Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett. 1, 2031–2036 (2010)CrossRefGoogle Scholar
  33. 33.
    Nishijima, Y., Nigorinuma, H., Rosa, L., Juodkazis, S.: Selective enhancement of infrared absorption with metal hole arrays. Opt. Mater. Express 2, 1367–1377 (2012)CrossRefGoogle Scholar
  34. 34.
    Tian, Y., Tatsuma, T.: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005)CrossRefGoogle Scholar
  35. 35.
    Sakai, N., Tatsuma, T.: Photovoltaic properties of glutathione-protected gold clusters adsorbed on TiO2 electrodes. Adv. Mater. 22, 3185–3188 (2010)CrossRefGoogle Scholar
  36. 36.
    García, M.A.: Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. 44, 283001 (2011)CrossRefGoogle Scholar
  37. 37.
    Centeno, A., Xie, F., Alford, N.: Light absorption and field enhancement in two-dimensional arrays of closely spaced silver nanoparticles. J. Opt. Soc. Am. B 28, 325–330 (2011)CrossRefGoogle Scholar
  38. 38.
    Catchpole, K.R., Polman, A.: Plasmonic solar cells. Opt. Express 16, 21793–21800 (2008)CrossRefGoogle Scholar
  39. 39.
    Beck, F.J., Verhagen, E., Mokkapati, S., Polman, A., Catchpole, K.R.: Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt. Express 19, A146–A156 (2011)CrossRefGoogle Scholar
  40. 40.
    Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)Google Scholar
  41. 41.
    Zhang, G., Wang, D.: Colloidal lithography-the art of nanochemical patterning. Chem. Asian J. 4, 236–245 (2009)CrossRefGoogle Scholar
  42. 42.
    Centeno, A., Breeze, J., Ahmed, B., Reehal, H., Alford, N.: Scattering of light into silicon by spherical and hemispherical silver nanoparticles. Opt. Lett. 35, 76–78 (2009)CrossRefGoogle Scholar
  43. 43.
    Liu, Z., Hou, W., Pavaskar, P., Aykol, M., Cronin, S.B.: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111–1116 (2010)CrossRefGoogle Scholar
  44. 44.
    Naseri, N., Amiri, M., Moshfegh, A.Z.: Visible photoenhanced current–voltage characteristics of Au : TiO2 nanocomposite thin films as photoanodes. J. Phys. D Appl. Phys. 43, 105405 (2010)CrossRefGoogle Scholar
  45. 45.
    Chandrasekharan, N., Kamat, P.V.: Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J. Phys. Chem. B 104, 10851–10857 (2000)CrossRefGoogle Scholar
  46. 46.
    Kittel, C.: Introduction to Solid State Physics. Wiley, NY (2004)Google Scholar
  47. 47.
    Petek, H., Ogawa, S.: Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci. 56, 239–310 (1997)CrossRefGoogle Scholar
  48. 48.
    Petek, H., Nagano, H., Ogawa, S.: Hole decoherence of d bands in copper. Phys. Rev. Lett. 83, 832–835 (1999)CrossRefGoogle Scholar
  49. 49.
    Sachtler, W., Dorgelo, G., Holscher, A.A.: The work function of gold. Surf. Sci. 5, 221–229 (1966)CrossRefGoogle Scholar
  50. 50.
    Giugni, A., et al.: Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 8, 845–852 (2013)CrossRefGoogle Scholar
  51. 51.
    Daniel, M.-C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)CrossRefGoogle Scholar
  52. 52.
    Knight, M.W., Sobhani, H., Nordlander, P., Halas, N.J.: Photodetection with active optical antennas. Science 332, 702–704 (2011)CrossRefGoogle Scholar
  53. 53.
    Mubeen, S., et al.: An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013)CrossRefGoogle Scholar
  54. 54.
    Mukherjee, S., et al.: Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013)CrossRefGoogle Scholar
  55. 55.
    Cushing, S.K., et al.: Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012)CrossRefGoogle Scholar
  56. 56.
    Li, J., et al.: Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 3, 47–51 (2013)CrossRefGoogle Scholar
  57. 57.
    Sundararaman, R., Narang, P., Jermyn, A.S., Goddard III, W.A., Atwater, H.A.: Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014)CrossRefGoogle Scholar
  58. 58.
    Manjavacas, A., Liu, J.G., Kulkarni, V., Nordlander, P.: Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014)CrossRefGoogle Scholar
  59. 59.
    Govorov, A.O., Zhang, H., Gun’ko, Y.K.: Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C. 117, 16616–16631 (2013)Google Scholar
  60. 60.
    Forbes, R.G., Deane, J.H.B.: Reformulation of the standard theory of Fowler-Nordheim tunnelling and cold field electron emission. Proc. R. Soc. Lon. A. Math. Phys. 463, 2907–2927 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Murphy, E.L., Good Jr, R.H.: Thermionic emission, field emission, and the transition region. Phys. Rev. 102, 1464 (1956)CrossRefGoogle Scholar
  62. 62.
    Fowler, R.H. Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. Lond. A Math. Phys. Sci. 173–181 (1928)Google Scholar
  63. 63.
    Lau, Y.Y., Liu, Y., Parker, R.K.: Electron emission: from the Fowler-Nordheim relation to the Child-Langmuir law. Phys. Plasmas 1, 2082–2085 (1994)CrossRefGoogle Scholar
  64. 64.
    Lin, H.Y., Chou, Y.Y., Cheng, C.L., Chen, Y.F.: Giant enhancement of band edge emission based on ZnO/TiO2 nanocomposites. Opt. Express 15, 13832–13837 (2007)CrossRefGoogle Scholar
  65. 65.
    Hernández-Martínez, P. Govorov, A.: Exciton energy transfer between nanoparticles and nanowires. Phys. Rev. B. 78, (2008)Google Scholar
  66. 66.
    Neretina, S., et al.: Plasmon field effects on the nonradiative relaxation of hot electrons in an electronically quantized system: CdTe–Au core–shell nanowires. Nano Lett. 8, 2410–2418 (2008)CrossRefGoogle Scholar
  67. 67.
    Makhal, A., et al.: Dynamics of light harvesting in ZnO nanoparticles. Nanotechnology 21, 265703 (2010)CrossRefGoogle Scholar
  68. 68.
    Andrews, D.L.: A unified theory of radiative and radiationless molecular energy transfer. Chem. Phys. 135, 195–201 (1989)CrossRefGoogle Scholar
  69. 69.
    Andrews, D.L., Bradshaw, D.S.: Virtual photons, dipole fields and energy transfer: a quantum electrodynamical approach. Eur. J. Phys. 25, 845–858 (2004)CrossRefzbMATHGoogle Scholar
  70. 70.
    Andrews, D.L., Curutchet, C., Scholes, G.D.: Resonance energy transfer: Beyond the limits. Laser Photon. Rev. 5, 114–123 (2010)CrossRefGoogle Scholar
  71. 71.
    Fox, M.: Optical Properties of Solids. Oxford University Press, Oxford (2010)Google Scholar
  72. 72.
    Furube, A., Du, L., Hara, K., Katoh, R., Tachiya, M.: Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852–14853 (2007)CrossRefGoogle Scholar
  73. 73.
    Karp, G.: Cell and Molecular Biology. Wiley, NY (2009)Google Scholar
  74. 74.
    Allongue, P.: In: Bockris, J., Conway, B.E. White, R.E. (eds.) Modern Aspects of Electrochemistry. vol. 23, pp. 239–314 (1992)Google Scholar
  75. 75.
    Patel, M., Mallia, G., Liborio, L., Harrison, N.M.: Water adsorption on rutile TiO2 (110) for applications in solar hydrogen production: a systematic hybrid-exchange density functional study. Phys. Rev. B 86, 045302 (2012)CrossRefGoogle Scholar
  76. 76.
    Blomquist, J., Walle, L.E., Uvdal, P., Borg, A., Sandell, A.: Water dissociation on single crystalline anatase TiO2 (001) studied by photoelectron spectroscopy. J. Phys. Chem. C 112, 16616–16621 (2008)CrossRefGoogle Scholar
  77. 77.
    Sumita, M., Hu, C., Tateyama, Y.: Interface water on TiO2 anatase (101) and (001) surfaces: first-principles study with TiO2 slabs dipped in bulk water. J. Phys. Chem. C 114, 18529–18537 (2010)CrossRefGoogle Scholar
  78. 78.
    Walle, L.E., et al.: Mixed dissociative and molecular water adsorption on anatase TiO2 (101). J. Phys. Chem. C 115, 9545–9550 (2011)CrossRefGoogle Scholar
  79. 79.
    Yang, H.G., et al.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008)CrossRefGoogle Scholar
  80. 80.
    Grinter, D.C., Nicotra, M., Thornton, G.: Acetic acid adsorption on anatase TiO2 (101). J. Phys. Chem. C 116, 11643–11651 (2012)CrossRefGoogle Scholar
  81. 81.
    Silva, V.F., et al.: Substrate-controlled allotropic phases and growth orientation of TiO2 epitaxial thin films. J. Appl. Cryst. 43, 1502–1512 (2010). doi: 10.1107/S0021889810041221
  82. 82.
    Hitosugi, T., et al.: Fabrication of TiO2-based transparent conducting oxide films on glass by pulsed laser deposition. Jpn. J. Appl. Phys. 46, L86–L88 (2007)CrossRefGoogle Scholar
  83. 83.
    Hitosugi, T., et al.: Electronic band structure of transparent conductor: Nb-doped anatase TiO2. Appl. Phys. Express 1, 111203 (2008)CrossRefGoogle Scholar
  84. 84.
    Hsieh, C., et al.: Monophasic TiO2 films deposited on SrTiO3 (100) by pulsed laser ablation. J. Appl. Phys. 92, 2518–2523 (2002)CrossRefGoogle Scholar
  85. 85.
    Nakamura, R., Okamura, T., Ohashi, N., Imanishi, A., Nakato, Y.: Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (Rutile) surfaces in aqueous acidic solutions. J. Am. Chem. Soc. 127, 12975–12983 (2005)CrossRefGoogle Scholar
  86. 86.
    Yamamoto, S., Sumita, T., Miyashita, A.: Preparation of TiO2-anatase film on Si (001) substrate with TiN and SrTiO3 as buffer layers. J. Phys. Condens. Matter 13, 2875 (2001)CrossRefGoogle Scholar
  87. 87.
    McDaniel, M.D., Posadas, A., Wang, T., Demkov, A.A., Ekerdt, J.G.: Growth and characterization of epitaxial anatase TiO2 (001) on SrTiO3-buffered Si (001) using atomic layer deposition. Thin Solid Films 520, 6525–6530 (2012)CrossRefGoogle Scholar
  88. 88.
    Sanches, F.F., Mallia, G., Liborio, L., Diebold, U., Harrison, N.M.: Hybrid exchange density functional study of vicinal anatase TiO2 surfaces. Phys. Rev. B 89(24), 5309 (2014)CrossRefGoogle Scholar
  89. 89.
    Furubayashi, Y., et al.: A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 86(25), 2101 (2005)CrossRefGoogle Scholar
  90. 90.
    Furubayashi, Y., et al.: Novel transparent conducting oxide: anatase TiNbO. Thin Solid Films 496, 157–159 (2006)CrossRefGoogle Scholar
  91. 91.
    Hitosugi, T., et al.: Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate. Thin Solid Films 516, 5750–5753 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations