Skip to main content

Fokker–Planck Equations

  • Chapter
  • First Online:
  • 1795 Accesses

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

Abstract

In this chapter, we review the Bakry–Emery approach from the PDE viewpoint (Sect. 2.1) and the original stochastic viewpoint (Sect. 2.3) and detail some known relations to convex Sobolev inequalities (Sect. 2.2). Our focus is the PDE viewpoint addressed by (Toscani, G, Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation, Quart. Appl. Math, 57, 521–541, (1999) [43]), and we follow partially the presentation of Matthes, D, Entropy Methods and Related Functional Inequalities, Lecture Notes, Pavia, Italy, (2007) http://www-m8.ma.tum.de/personen/matthes/papers/lecpavia.pdf [34]. The original Bakry–Emery method in (Bakry, D, Emery, M, Diffusions hypercontractives. Séminaire de probabilités XIX, 1983/84, Lecture Notes in Mathmatics, vol. 1123, pp. 177–206, Springer, Berlin (1985) [7] has been elaborated by many authors, and we select some of its extensions, including intermediate asymptotics by Carrillo and Toscani, Asymptotic \(L^1\)-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., 49, 113–142, (2000) [13] (Sect. 2.4) and more general Fokker–Planck equations, investigated, e.g., by Carrillo et al., Asymptotic \(L^1\)-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., 49, 113–142, (2000); Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math. 133, 1–82, (2001) [13, 14] and Arnold et al., Large-time behavior of non-symmetric Fokker-Planck type equations, Commun. Stoch. Anal., 2, 153–175, (2008); Sharp entropy decay for hypocoercive and non-symmetric Fokker–Planck equations with linear drift, Preprint (2014). arXiv:1409.5425 [2, 5] (Sects. 2.52.6). Because of limited space, we ignore many important developments and deep connections to, e.g., optimal transport and Riemannian geometry, and we just refer to Villani, C.: Optimal Transport Old and New. Springer, Berlin (2009) [46] and the numerous references therein for more information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Achleitner, F., Arnold, A., Stürzer, D.: Large-time behavior in non-symmetric Fokker–Planck equations. Riv. Mat. Univ. Parma 6, 1–68 (2015)

    Google Scholar 

  2. Arnold, A., Carlen, E., Ju, Q.-C.: Large-time behavior of non-symmetric Fokker–Planck type equations. Commun. Stoch. Anal. 2, 153–175 (2008)

    Google Scholar 

  3. Arnold, A., Carrillo, J.A., Klapproth, C.: Improved entropy decay estimates for the heat equation. J. Math. Anal. Appl. 343, 190–206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, A., Dolbeault, J.: Refined convex Sobolev inequalities. J. Funct. Anal. 225, 337–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric Fokker–Planck equations with linear drift. Preprint (2014). arXiv:1409.5425

  6. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Part. Diff. Equ. 26, 43–100 (2001)

    Google Scholar 

  7. Bakry, D., Emery, M.: Diffusions hypercontractives. Séminaire de probabilités XIX, 1983/84. Lecture Notes in Mathmatics, vol. 1123, pp. 177–206. Springer, Berlin (1985)

    Google Scholar 

  8. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  9. Barthe, F., Cattiaux, P., Roberto, C.: Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Math. Iberoam. 22, 993–1067 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beckner, W.: A generalized Poincaré inequality for Gaussian measures. Proc. Am. Math. Soc. 105, 397–400 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Bertsch, M., Hilhorst, D.: A density dependent diffusion equation in population dynamics: stabilization to equilibrium. SIAM J. Math. Anal. 17, 863–883 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bolley, F., Gentil, I.: Phi-entropy inequalities for diffusion semigroups. J. Math. Pure Appl. 93, 449–473 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carrillo, J.A., Toscani, G.: Asymptotic \(L^1\)-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49, 113–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carrillo, J.A., Jüngel, A., Markowich, P., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133, 1–82 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chafaï, D.: Entropies, convexity, and functional inequalities: on \(\Phi \)-entropies and \(\Phi \)-Sobolev inequalities. J. Math. Kyoto Univ. 44, 325–363 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Del Pino, M., Dolbeault, J.: Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875 (2002)

    Google Scholar 

  17. Desvillettes, L., Fellner, K.: Exponential convergence to equilibrium for nonlinear reaction-diffusion systems arising in reversible chemistry. In: C. Pötzsche et al. (eds.) System Modeling and Optimization, FIP Advance Information Communication Technology, vol. 443, pp. 96–104 (2014)

    Google Scholar 

  18. Dolbeault, J.: Time-dependent rescalings and Lyapunov functionals for some kinetic and fluid models. Trans. Theor. Stat. Phys. 29, 537–549 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dolbeault, J., Toscani, G.: Best matching Barenblatt profiles are delayed. J. Phys. A Math. Theor. 48, 065206 (2015)

    Google Scholar 

  20. Dolbeault, J., Nazaret, B., Savaré, G.: On the Bakry–Emery criterion for linear diffusions and weighted porous media equations. Commun. Math. Sci. 6, 477–494 (2008)

    Google Scholar 

  21. Federbush, P.: Partially alternate derivation of a result by Nelson. J. Math. Phys. 10, 50–52 (1969)

    Article  MATH  Google Scholar 

  22. Fiestas, J., Spurzem, R., Kim, E.: 2D Fokker–Planck models of rotating clusters. Mon. Not. Roy. Astron. Soc. 373, 677–686 (2006)

    Google Scholar 

  23. Frank, T.: Nonlinear Fokker–Planck Equations. Springer, Berlin (2005)

    Google Scholar 

  24. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97, 1061–1083 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hérau, F.: Short and long time behavior of the Fokker–Planck equation in a confining potential and applications. J. Funct. Anal. 244, 95–118 (2007)

    Google Scholar 

  26. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jüngel, A.: Transport Equations for Semiconductors. Lecture Notes Physics, vol. 773. Springer, Berlin (2009)

    Google Scholar 

  28. Jüngel, A.: On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors. Math. Models Meth. Appl. Sci. 4, 677–703 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kamin, S., Vázquez, J.L.: Fundamental solutions and asymptotic behaviour for the \(p\)-Laplacian equation. Rev. Mat. Iberoam. 4, 339–354 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Latała, R., Oleszkiewicz, K.: Between Sobolev and Poincaré. In: Milmana, V., Schechtman, G. (eds.). Geometric Aspects of Functional Analysis. Lecture Notes Mathematics, vol. 1745, pp. 147–168. Springer, Berlin (2000)

    Google Scholar 

  31. Ledoux, M.: L’algèbre de Lie des gradients itérés d’un générateur markovien – développements de moyennes et entropies. Ann. Sci. Ec. Norm. Sup. 28, 435–460 (1995)

    Google Scholar 

  32. Liero, M., Mielke, A.: Gradient structures and geodesic convexity for reaction-diffusion systems. Phil. Trans. Roy. Soc. A 371, 20120346 (2013)

    Google Scholar 

  33. Markowich, P., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer, New York (1990)

    Book  MATH  Google Scholar 

  34. Matthes, D.: Entropy Methods and Related Functional Inequalities. Lecture Notes, Pavia, Italy (2007). http://www-m8.ma.tum.de/personen/matthes/papers/lecpavia.pdf

  35. Newman, W.: A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity I. J. Math. Phys. 25, 3120–3123 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Part. Diff. Equ. 26, 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ralston, J.: A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity II. J. Math. Phys. 25, 3124–3127 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Reed, V., Simon, B.: Methods of Modern Mathematical Physics. Analysis of Operators, vol. 4. Academic Press, San Diego (1978)

    Google Scholar 

  39. Risken, H.: The Fokker–Planck Equation. Methods of Solution and Applications, 2nd edn. Springer, Berlin (1989)

    Google Scholar 

  40. Rostoker, N., Rosenbluth, M.: Fokker–Planck equation for a plasma with a constant magnetic field. J. Nucl. Energy, Part C Plasma Phys. 2, 195–205 (1961)

    Google Scholar 

  41. Stam, A.: Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inf. Control 2, 101–112 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stroock, D.: Logarithmic Sobolev inequalities for Gibbs states. Lec. Notes Math. 1563, 194–228 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Toscani, G.: Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation. Quart. Appl. Math. 57, 521–541 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Vázquez, J.L.: The Porous Medium Equation Mathematical Theory. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  45. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 1, pp. 71–305. North-Holland, Amsterdam (2002)

    Google Scholar 

  46. Villani, C.: Optimal Transport Old and New. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Jüngel, A. (2016). Fokker–Planck Equations. In: Entropy Methods for Diffusive Partial Differential Equations. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-34219-1_2

Download citation

Publish with us

Policies and ethics