Skip to main content

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 1665 Accesses

Abstract

Some concepts of entropy in physics and mathematics are reviewed in Sects. 1.1 and 1.2, respectively. In Sect. 1.3, basic ideas of entropy methods for partial differential equations from the literature, considered in the following chapters, are summarized. Following Matthes, D, Entropy Methods and Related Functional Inequalities, Lecture Notes, Pavia, Italy (2007) http://www-m8.ma.tum.de/personen/matthes/papers/lecpavia.pdf [44], general definitions of mathematical entropy, entropy production, and entropy inequalities are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, S., Dirr, N., Peletier, M., Zimmer, J.: Large deviations and gradient flows. Phil. Trans. Roy. Soc. A 371, 20120341 (2013)

    Google Scholar 

  2. Adler, R., Konheim, A., McAndrew, M.: Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lecture Mathmatics ETH Zürich. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  4. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Part. Diff. Equ. 26, 43–100 (2001)

    Google Scholar 

  5. Bakry, D., Emery, M.: Diffusions hypercontractives. Séminaire de probabilités XIX, 1983/84. Lecture Notes Mathmatics, vol. 1123, pp. 177–206. Springer, Berlin (1985)

    Google Scholar 

  6. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  7. Bekenstein, J.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  MathSciNet  Google Scholar 

  8. Boillat, G.: La propagation des ondes. C. R. Math. Acad. Sci. Paris 274, 1018–1021 (1972)

    MathSciNet  Google Scholar 

  9. Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte der Akademie der Wissenschaften 66, 275–370 (1872)

    Google Scholar 

  10. Boltzmann, L.: Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht. Wiener Berichte 76, 373–435 (1877)

    MATH  Google Scholar 

  11. Bothe, D.: On the Maxwell–Stefan equations to multicomponent diffusion. In: Escher, J. et al. (eds.). Parabolic Problems. The Herbert Amann Festschrift, pp. 81–93. Springer, Basel (2011)

    Google Scholar 

  12. Brenier, Y.: Rearrangement, convection, convexity and entropy. Phil. Trans. Roy. Soc. A 371, 20120343 (2013)

    Google Scholar 

  13. Burger, M., Di Francesco, M., Pietschmann, J.-F., Schlake, B.: Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42, 2842–2871 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carrillo, J.A., Toscani, G.: Asymptotic \(L^1\)-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49, 113–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cercignani, C.: Mathematical Methods in Kinetic Theory. Plenum Press, New York (1969)

    Book  MATH  Google Scholar 

  16. Chen, L., Jüngel, A.: Analysis of a multi-dimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36, 301–322 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, L., Jüngel, A.: Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Diff. Equ. 224, 39–59 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Clausius, R.: Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Ann. Phys. 201, 353–400 (1865)

    Article  Google Scholar 

  19. Csiszár, I.: Axiomatic characterization of information measures. Entropy 10, 261–273 (2008)

    Article  MATH  Google Scholar 

  20. Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  21. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 2. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  22. Day, W.: Entropy and Partial Differential Equations. Essex, Scientific & Technical, Longman (1993)

    MATH  Google Scholar 

  23. Degond, P., Génieys, S., Jüngel, A.: A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. J. Math. Pures Appl. 76, 991–1015 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Degond, P., Méhats, F., Ringhofer, C.: Quantum energy-transport and drift-diffusion models. J. Stat. Phys. 118, 625–665 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159, 245–316 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Edgeworth, F.: On the probable errors of frequency-constants. J. Roy. Stat. Soc. 71, 381–397, 499–512, 651–678 (1908)

    Google Scholar 

  27. Effenberger, F.: A primer on information theory with applications to neuroscience. In: Rakocevic, G., et al. (eds.) Computational Medicine in Data Mining and Modeling, pp. 135–192. Springer, New York (2013)

    Chapter  Google Scholar 

  28. Evans, L.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  29. Evans, L.: Monotonicity formulae for variational problems. Phil. Trans. Roy. Soc. A 371, 20120339 (2013)

    Google Scholar 

  30. Fisher, R.: Theory of statistical estimation. Proc. Camb. Phil. Soc. 22, 700–725 (1925)

    Article  MATH  Google Scholar 

  31. Friedrichs, K., Lax, P.: Systems of conservation laws with a convex extension. Proc. Natl. Acad. Sci. USA 68, 1686–1688 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gajewski, H.: On the uniqueness of solutions to the drift-diffusion model for semiconductor devices. Math. Models Meth. Appl. Sci. 4, 121–133 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Galiano, G., Garzón, M., Jüngel, A.: Semi-discretization and numerical convergence of a nonlinear cross-diffusion population model. Numer. Math. 93, 655–673 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gianazza, U., Savaré, G., Toscani, G.: The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation. Arch. Ration. Mech. Anal. 194, 133–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gibbs, W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Arts Sci. 3, 108–248, 343–524 (1874–78)

    Google Scholar 

  36. Godunov, S.: An interesting class of quasilinear systems. Dokl. Akad. Nauk. SSSR 139, 521–523 (1961); English translation: Soviet Math. 2, 947–949 (1961)

    Google Scholar 

  37. Hawking, S.: Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344–1346 (1971)

    Article  Google Scholar 

  38. Jaynes, E.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630; 108, 171–190 (1957)

    Google Scholar 

  39. Jüngel, A.: Transport Equations for Semiconductors. Lecture Notes in Physics. vol. 773. Springer, Berlin (2009)

    Google Scholar 

  40. Jüngel, A.: The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity 28, 1963–2001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jüngel, A., Matthes, D.: The Derrida–Lebowitz–Speer–Spohn equation: existence, non-uniqueness, and decay rates of the solutions. SIAM J. Math. Anal. 39, 1996–2015 (2008)

    Google Scholar 

  42. Jüngel, A., Stelzer, I.: Existence analysis of Maxwell–Stefan systems for multicomponent mixtures. SIAM J. Math. Anal. 45, 2421–2440 (2013)

    Google Scholar 

  43. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Matthes, D.: Entropy Methods and Related Functional Inequalities. Lecture Notes, Pavia, Italy. http://www-m8.ma.tum.de/personen/matthes/papers/lecpavia.pdf (2007)

  45. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 931–954 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  46. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Part. Diff. Equ. 26, 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Preprint (2002). arXiv:math/0211159

  48. Planck, M.: Ueber das Princip der Vermehrung der Entropie. Annalen der Physik und Chemie 266, 562–582; 267, 189–203; 268, 462–503 (1887)

    Google Scholar 

  49. Planck, M.: Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum. Verhandlungen der Deutschen Physikalischen Gesellschaft 2, 237–245 (1900)

    MATH  Google Scholar 

  50. Rupert, M., Woolgar, E.: Bakry–Emery black holes. Class. Quantum Gravit. 31, 025008 (2014)

    Google Scholar 

  51. Saint-Raymond, L.: Entropy inequality and hydrodynamic limits for the Boltzmann equation. Phil. Trans. Roy. Soc. A 371, 20120350 (2013)

    Google Scholar 

  52. Shannon, C.: A mathematical theory of communication. Bell Sys. Tech. J. 27(379–423), 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sinai, Y.: On the notion of entropy of a dynamical system. Dokl. Russ. Acad. Sci. 124, 768–771 (1959)

    MathSciNet  MATH  Google Scholar 

  54. Sturm, K.-T., von Renesse, M.: Transport inequalities, gradient estimates, entropy and Ricci curvature. Commun. Pure Appl. Math. 58, 923–940 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Toscani, G.: Sur l’inégalité logarithmique de Sobolev. C. R. Acad. Sci. Paris 324, 689–694 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. Villani, C.: A Review of Mathematical Topics in Collisional Kinetic Theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 1, pp. 71–305. North-Holland, Amsterdam (2002)

    Chapter  Google Scholar 

  57. Villani, C.: Optimal Transport Old and New. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  58. von Neumann, J.: Thermodynamik quantenmechanischer Gesamtheiten. Göttinger Nachrichten 1927, 273–291 (1927)

    Google Scholar 

  59. Wu, Z., Yin, J., Wang, C.: Elliptic and Parabolic Equations. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  60. Zamponi, N., Jüngel, A.: Analysis of degenerate cross-diffusion population models with volume filling. To appear in Ann. Inst. H. Poincaré Anal. Non Lin. (2016). arXiv:1502.05617

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Jüngel, A. (2016). Introduction. In: Entropy Methods for Diffusive Partial Differential Equations. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-34219-1_1

Download citation

Publish with us

Policies and ethics