Skip to main content

Role of the Immune System in Hepatocellular Carcinoma: Implications for Existing and Novel Therapies

  • Chapter
  • First Online:
Hepatocellular Carcinoma

Part of the book series: Current Clinical Oncology ((CCO))

  • 1991 Accesses

Abstract

Currently available treatment options for HCC are very limited. Much of the ongoing research thus aims to develop novel therapeutic approaches. Importantly, many different studies could demonstrate a pivotal role for the immune system in determining patient survival in HCC. Indeed, different immunotherapies are currently under evaluation for HCC and other cancers. A class of immunotherapies termed checkpoint inhibitors has already gained approval for the treatment of melanoma, demonstrating the potency of this new class of cancer therapy. Since these therapies target the immune system and not the tumor, they may be transferable to HCC. The immune system may thus have a major role in the future therapy of HCC. Several lines of evidence indicate that the immune system may also have a different, tumorigenic role. It is actively involved in the chronic hepatic inflammation culminating in HCC and may thus represent a common pathway of hepatocarcinogenesis. In this chapter, we will summarize our current understanding of the dual role of the immune system in the development and control of HCC. We will furthermore discuss implications of these findings for existing and novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27.

    Article  CAS  PubMed  Google Scholar 

  2. Stauffer JK, Scarzello AJ, Jiang Q, Wiltrout RH. Chronic inflammation, immune escape, and oncogenesis in the liver: a unique neighborhood for novel intersections. Hepatol Baltim. 2012;56:1567–74.

    Article  CAS  Google Scholar 

  3. Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV. Immune pathogenesis of hepatocellular carcinoma. J Exp Med. 1998;188:341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haybaeck J, Zeller N, Wolf MJ, et al. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell. 2009;16:295–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wolf MJ, Adili A, Piotrowitz K, et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell. 2014;26:549–64.

    Article  CAS  PubMed  Google Scholar 

  6. Cardin R. Oxidative damage in the progression of chronic liver disease to hepatocellular carcinoma: an intricate pathway. World J Gastroenterol. 2014;20:3078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nanba S, Ikeda F, Baba N, et al. Association of hepatic oxidative stress and iron dysregulation with HCC development after interferon therapy in chronic hepatitis C. J Clin Pathol. 2015;. doi:10.1136/jclinpath-2015-203215.

    PubMed  Google Scholar 

  8. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  PubMed  Google Scholar 

  9. Dapito DH, Mencin A, Gwak G-Y, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21:504–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yan W, Chang Y, Liang X, Cardinal JS, Huang H, Thorne SH, Monga SPS, Geller DA, Lotze MT, Tsung A. High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatol Baltim. 2012;55:1863–75.

    Article  CAS  Google Scholar 

  11. Chen C-L, Tsukamoto H, Liu J-C, et al. Reciprocal regulation by TLR4 and TGF-β in tumor-initiating stem-like cells. J Clin Invest. 2013;123:2832–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yuan M-M, Xu Y-Y, Chen L, Li X-Y, Qin J, Shen Y. TLR3 expression correlates with apoptosis, proliferation and angiogenesis in hepatocellular carcinoma and predicts prognosis. BMC Cancer. 2015;15:245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Li S, Sun R, Chen Y, Wei H, Tian Z. TLR2 limits development of hepatocellular carcinoma by reducing IL18-mediated immunosuppression. Cancer Res. 2015;75:986–95.

    Article  CAS  PubMed  Google Scholar 

  14. Pham CG, Bubici C, Zazzeroni F, et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell. 2004;119:529–42.

    Article  CAS  PubMed  Google Scholar 

  15. Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, Roskams T, Trautwein C, Pasparakis M. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell. 2007;11:119–32.

    Article  CAS  PubMed  Google Scholar 

  16. He G, Karin M. NF-κB and STAT3—key players in liver inflammation and cancer. Cell Res. 2011;21:159–68.

    Article  CAS  PubMed  Google Scholar 

  17. Sakurai T, He G, Matsuzawa A, Yu G-Y, Maeda S, Hardiman G, Karin M. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell. 2008;14:156–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wong VW-S, Yu J, Cheng AS-L, Wong GL-H, Chan H-Y, Chu ES-H, Ng EK-O, Chan FK-L, Sung JJ-Y, Chan HL-Y. High serum interleukin-6 level predicts future hepatocellular carcinoma development in patients with chronic hepatitis B. Int J Cancer. 2009;124:2766–70.

    Article  CAS  PubMed  Google Scholar 

  19. Nakagawa H, Maeda S, Yoshida H, et al. Serum IL-6 levels and the risk for hepatocarcinogenesis in chronic hepatitis C patients: An analysis based on gender differences. Int J Cancer. 2009;125:2264–9.

    Article  CAS  PubMed  Google Scholar 

  20. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317:121–4.

    Article  CAS  PubMed  Google Scholar 

  21. He G, Dhar D, Nakagawa H, et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell. 2013;155:384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wan S, Zhao E, Kryczek I, Vatan L, Sadovskaya A, Ludema G, Simeone DM, Zou W, Welling TH. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology. 2014;147:1393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Won C, Kim B-H, Yi EH, et al. Signal transducer and activator of transcription 3-mediated CD133 up-regulation contributes to promotion of hepatocellular carcinoma. Hepatol Baltim. 2015;62:1160–73.

    Article  CAS  Google Scholar 

  24. Yan W, Liu X, Ma H, Zhang H, Song X, Gao L, Liang X, Ma C. Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut. 2015;64:1593–604. doi:10.1136/gutjnl-2014-307671.

    Article  CAS  PubMed  Google Scholar 

  25. Fu X-T, Dai Z, Song K, et al. Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int J Oncol. 2015;46:587–96.

    CAS  PubMed  Google Scholar 

  26. Yeung OWH, Lo C-M, Ling C-C, et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol. 2015;62:607–16.

    Article  CAS  PubMed  Google Scholar 

  27. Fan Q-M, Jing Y-Y, Yu G-F, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 2014;352:160–8.

    Article  CAS  PubMed  Google Scholar 

  28. Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol. 2014;. doi:10.1016/j.jaci.2014.11.001.

    PubMed  Google Scholar 

  29. Kuang D-M, Peng C, Zhao Q, Wu Y, Chen M-S, Zheng L. Activated monocytes in peritumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells. Hepatol Baltim. 2010;51:154–64.

    Article  CAS  Google Scholar 

  30. Kuang D-M, Peng C, Zhao Q, Wu Y, Zhu L-Y, Wang J, Yin X-Y, Li L, Zheng L. Tumor-activated monocytes promote expansion of IL-17-producing CD8+ T cells in hepatocellular carcinoma patients. J Immunol Baltim. 2010;185:1544–9.

    Article  CAS  Google Scholar 

  31. Zhang J-P, Yan J, Xu J, Pang X-H, Chen M-S, Li L, Wu C, Li S-P, Zheng L. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol. 2009;50:980–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kuang D-M, Zhao Q, Wu Y, Peng C, Wang J, Xu Z, Yin X-Y, Zheng L. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol. 2011;54:948–55.

    Article  CAS  PubMed  Google Scholar 

  33. Wu Y, Zhao Q, Peng C, Sun L, Li X-F, Kuang D-M. Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3K activation loop. J Pathol. 2011;225:438–47.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang R, Tan Z, Deng L, Chen Y, Xia Y, Gao Y, Wang X, Sun B. Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatol Baltim. 2011;54:900–9.

    Article  CAS  Google Scholar 

  35. Kuang D-M, Xiao X, Zhao Q, et al. B7-H1-expressing antigen-presenting cells mediate polarization of protumorigenic Th22 subsets. J Clin Invest. 2014;124:4657–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatol Baltim. 1998;27:407–14.

    Article  CAS  Google Scholar 

  37. Ikeguchi M, Oi K, Hirooka Y, Kaibara N. CD8+ lymphocyte infiltration and apoptosis in hepatocellular carcinoma. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2004;30:53–7.

    CAS  Google Scholar 

  38. Unitt E, Marshall A, Gelson W, Rushbrook SM, Davies S, Vowler SL, Morris LS, Coleman N, Alexander GJM. Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J Hepatol. 2006;45:246–53.

    Article  CAS  PubMed  Google Scholar 

  39. Brunner SM, Rubner C, Kesselring R, Martin M, Griesshammer E, Ruemmele P, Stempfl T, Teufel A, Schlitt HJ, Fichtner-Feigl S. Tumor-infiltrating, interleukin-33-producing effector-memory CD8(+) T cells in resected hepatocellular carcinoma prolong patient survival. Hepatol Baltim. 2015;61:1957–67.

    Article  CAS  Google Scholar 

  40. Kang T-W, Yevsa T, Woller N, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011;479:547–51.

    Article  CAS  PubMed  Google Scholar 

  41. Schneider C, Teufel A, Yevsa T, et al. Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer. Gut. 2012;61:1733–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Obeng-Adjei N, Choo DK, Weiner DB. Hydrodynamic immunization leads to poor CD8 T-cell expansion, low frequency of memory CTLs and ineffective antiviral protection. Cancer Gene Ther. 2013;20:552–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang N, Bevan MJ. CD8+ T cells: foot soldiers of the immune system. Immunity. 2011;35:161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Breous E, Thimme R. Potential of immunotherapy for hepatocellular carcinoma. J Hepatol. 2011;54:830–4.

    Article  CAS  PubMed  Google Scholar 

  45. Gehring AJ, Ho ZZ, Tan AT, Aung MO, Lee KH, Tan KC, Lim SG, Bertoletti A. Profile of tumor antigen-specific CD8 T cells in patients with hepatitis B virus-related hepatocellular carcinoma. Gastroenterology. 2009;137:682–90.

    Article  CAS  PubMed  Google Scholar 

  46. Mizukoshi E, Nakamoto Y, Arai K, Yamashita T, Sakai A, Sakai Y, Kagaya T, Yamashita T, Honda M, Kaneko S. Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatol Baltim. 2011;53:1206–16.

    Article  CAS  Google Scholar 

  47. Flecken T, Schmidt N, Hild S, et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatol Baltim. 2014;59:1415–26.

    Article  CAS  Google Scholar 

  48. Liang J, Ding T, Guo Z-W, Yu X-J, Hu Y-Z, Zheng L, Xu J. Expression pattern of tumour-associated antigens in hepatocellular carcinoma: association with immune infiltration and disease progression. Br J Cancer. 2013;109:1031–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hiroishi K, Eguchi J, Baba T, et al. Strong CD8(+) T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol. 2010;45:451–8.

    Article  CAS  PubMed  Google Scholar 

  50. Zerbini A, Pilli M, Soliani P, et al. Ex vivo characterization of tumor-derived melanoma antigen encoding gene-specific CD8+ cells in patients with hepatocellular carcinoma. J Hepatol. 2004;40:102–9.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang H-G, Chen H-S, Peng J-R, et al. Specific CD8(+)T cell responses to HLA-A2 restricted MAGE-A3 p271-279 peptide in hepatocellular carcinoma patients without vaccination. Cancer Immunol Immunother CII. 2007;56:1945–54.

    Article  CAS  PubMed  Google Scholar 

  52. Xu Y, Li H, Gao RL, Adeyemo O, Itkin M, Kaplan DE. Expansion of interferon-gamma-producing multifunctional CD4+ T-cells and dysfunctional CD8+ T-cells by glypican-3 peptide library in hepatocellular carcinoma patients. Clin Immunol Orlando Fla. 2011;139:302–13.

    Article  CAS  Google Scholar 

  53. Maki A, Matsuda M, Asakawa M, Kono H, Fujii H, Matsumoto Y. Decreased expression of CD28 coincides with the down-modulation of CD3zeta and augmentation of caspase-3 activity in T cells from hepatocellular carcinoma-bearing patients and hepatitis C virus-infected patients. J Gastroenterol Hepatol. 2004;19:1348–56.

    Article  CAS  PubMed  Google Scholar 

  54. Willimsky G, Schmidt K, Loddenkemper C, Gellermann J, Blankenstein T. Virus-induced hepatocellular carcinomas cause antigen-specific local tolerance. J Clin Invest. 2013;123:1032–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gao Q, Wang X-Y, Qiu S-J, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15:971–9.

    Article  CAS  Google Scholar 

  57. Shi F, Shi M, Zeng Z, Qi R-Z, Liu Z-W, Zhang J-Y, Yang Y-P, Tien P, Wang F-S. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer J Int Cancer. 2011;128:887–96.

    Article  CAS  Google Scholar 

  58. Li H, Wu K, Tao K, et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatol Baltim. 2012;56:1342–51.

    Article  CAS  Google Scholar 

  59. Li F-J, Zhang Y, Jin G-X, Yao L, Wu D-Q. Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8(+) T cell in HCC patients. Immunol Lett. 2013;150:116–22.

    Article  CAS  PubMed  Google Scholar 

  60. Ninomiya T, Akbar SM, Masumoto T, Horiike N, Onji M. Dendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinoma. J Hepatol. 1999;31:323–31.

    Article  CAS  PubMed  Google Scholar 

  61. Ormandy L-A, Farber A, Cantz T, Petrykowska S, Wedemeyer H, Horning M, Lehner F, Manns M-P, Korangy F, Greten T-F. Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma. World J Gastroenterol WJG. 2006;12:3275–82.

    Article  CAS  PubMed  Google Scholar 

  62. Han Y, Chen Z, Yang Y, et al. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatol Baltim. 2014;59:567–79.

    Article  CAS  Google Scholar 

  63. Pardee AD, Shi J, Butterfield LH. Tumor-derived α-fetoprotein impairs the differentiation and T cell stimulatory activity of human dendritic cells. J Immunol Baltim. 2014;193:5723–32.

    Article  CAS  Google Scholar 

  64. Ritter M, Ali MY, Grimm CF, Weth R, Mohr L, Bocher WO, Endrulat K, Wedemeyer H, Blum HE, Geissler M. Immunoregulation of dendritic and T cells by alpha-fetoprotein in patients with hepatocellular carcinoma. J Hepatol. 2004;41:999–1007.

    Article  CAS  PubMed  Google Scholar 

  65. Evdokimova VN, Liu Y, Potter DM, Butterfield LH. AFP-specific CD4+ helper T-cell responses in healthy donors and HCC patients. J Immunother Hagerstown. 2009;30:425–37.

    Article  CAS  Google Scholar 

  66. Witkowski M, Spangenberg HC, Neumann-Haefelin C, et al. Lack of ex vivo peripheral and intrahepatic α-fetoprotein-specific CD4+ responses in hepatocellular carcinoma. Int J Cancer J Int Cancer. 2011;129:2171–82.

    Article  CAS  Google Scholar 

  67. Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65:2457–64.

    Article  CAS  PubMed  Google Scholar 

  69. Yang XH, Yamagiwa S, Ichida T, Matsuda Y, Sugahara S, Watanabe H, Sato Y, Abo T, Horwitz DA, Aoyagi Y. Increase of CD4+CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol. 2006;45:254–62.

    Article  CAS  PubMed  Google Scholar 

  70. Gao Q, Qiu S-J, Fan J, Zhou J, Wang X-Y, Xiao Y-S, Xu Y, Li Y-W, Tang Z-Y. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25:2586–93.

    Article  Google Scholar 

  71. Fu J, Xu D, Liu Z, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 2007;132:2328–39.

    Article  PubMed  Google Scholar 

  72. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP, Greten TF, Korangy F. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008;135:234–43.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang H-H, Mei M-H, Fei R, Liao W-J, Wang X-Y, Qin L-L, Wang J-H, Wei L, Chen H-S. Regulatory T cell depletion enhances tumor specific CD8 T-cell responses, elicited by tumor antigen NY-ESO-1b in hepatocellular carcinoma patients, in vitro. Int J Oncol. 2010;36:841–8.

    CAS  PubMed  Google Scholar 

  74. Kalathil S, Lugade AA, Miller A, Iyer R, Thanavala Y. Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res. 2013;73:2435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ishiyama K, Ohdan H, Ohira M, Mitsuta H, Arihiro K, Asahara T. Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatol Baltim. 2006;43:362–72.

    Article  CAS  Google Scholar 

  76. Pahl J, Cerwenka A. Tricking the balance: NK cells in anti-cancer immunity. Immunobiology. 2015;. doi:10.1016/j.imbio.2015.07.012.

    PubMed  Google Scholar 

  77. Kamimura H, Yamagiwa S, Tsuchiya A, et al. Reduced NKG2D ligand expression in hepatocellular carcinoma correlates with early recurrence. J Hepatol. 2012;56:381–8.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang J, Xu Z, Zhou X, Zhang H, Yang N, Wu Y, Chen Y, Yang G, Ren T. Loss of expression of MHC class I-related chain A (MICA) is a frequent event and predicts poor survival in patients with hepatocellular carcinoma. Int J Clin Exp Pathol. 2014;7:3123–31.

    PubMed  PubMed Central  Google Scholar 

  79. Li T, Yang Y, Hua X, Wang G, Liu W, Jia C, Tai Y, Zhang Q, Chen G. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett. 2012;318:154–61.

    Article  CAS  PubMed  Google Scholar 

  80. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF, Korangy F. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatol Baltim. 2009;50:799–807.

    Article  CAS  Google Scholar 

  81. Wu Y, Kuang D-M, Pan W-D, Wan Y-L, Lao X-M, Wang D, Li X-F, Zheng L. Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. Hepatol Baltim. 2013;57:1107–16.

    Article  CAS  Google Scholar 

  82. Korangy F, Ormandy LA, Bleck JS, Klempnauer J, Wilkens L, Manns MP, Greten TF. Spontaneous tumor-specific humoral and cellular immune responses to NY-ESO-1 in hepatocellular carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10:4332–41.

    Article  CAS  Google Scholar 

  83. Jia Y, Zeng Z, Li Y, Li Z, Jin L, Zhang Z, Wang L, Wang F-S. Impaired function of CD4+ T follicular helper (Tfh) cells associated with hepatocellular carcinoma progression. PLoS ONE. 2015;10:e0117458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Mohamed FE, Al-Jehani RM, Minogue SS, et al. Effect of toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular carcinoma. Liver Int Off J Int Assoc Study Liver. 2015;35:1063–76.

    CAS  Google Scholar 

  85. Zhou Z, Yu X, Zhang J, Tian Z, Zhang C. TLR7/8 agonists promote NK-DC cross-talk to enhance NK cell anti-tumor effects in hepatocellular carcinoma. Cancer Lett. 2015;. doi:10.1016/j.canlet.2015.09.017.

    Google Scholar 

  86. Sui Q, Zhang J, Sun X, Zhang C, Han Q. Tian Z (2014) NK cells are the crucial antitumor mediators when STAT3-mediated immunosuppression is blocked in hepatocellular carcinoma. J Immunol Baltim. 1950;193:2016–23.

    Article  CAS  Google Scholar 

  87. Aruga A, Yamauchi K, Takasaki K, Furukawa T, Hanyu F. Induction of autologous tumor-specific cytotoxic T cells in patients with liver cancer. Characterizations and clinical utilization. Int J Cancer J Int Cancer. 1991;49:19–24.

    Article  CAS  Google Scholar 

  88. Butterfield LH, Koh A, Meng W, Vollmer CM, Ribas A, Dissette V, Lee E, Glaspy JA, McBride WH, Economou JS. Generation of human T-cell responses to an HLA-A2.1-restricted peptide epitope derived from alpha-fetoprotein. Cancer Res. 1999;59:3134–42.

    CAS  PubMed  Google Scholar 

  89. Tomimaru Y, Mishra S, Safran H, Charpentier KP, Martin W, De Groot AS, Gregory SH, Wands JR. Aspartate-β-hydroxylase induces epitope-specific T cell responses in hepatocellular carcinoma. Vaccine. 2015;. doi:10.1016/j.vaccine.2015.01.037.

    PubMed  PubMed Central  Google Scholar 

  90. Grimm CF, Ortmann D, Mohr L, Michalak S, Krohne TU, Meckel S, Eisele S, Encke J, Blum HE, Geissler M. Mouse alpha-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice. Gastroenterology. 2000;119:1104–12.

    Article  CAS  PubMed  Google Scholar 

  91. Butterfield LH, Economou JS, Gamblin TC, Geller DA. Alpha fetoprotein DNA prime and adenovirus boost immunization of two hepatocellular cancer patients. J Transl Med. 2014;12:86.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mizukoshi E, Nakagawa H, Kitahara M, et al. Immunological features of T cells induced by human telomerase reverse transcriptase-derived peptides in patients with hepatocellular carcinoma. Cancer Lett. 2015;364:98–105.

    Article  CAS  PubMed  Google Scholar 

  93. Mizukoshi E, Nakagawa H, Kitahara M, Yamashita T, Arai K, Sunagozaka H, Iida N, Fushimi K, Kaneko S. Phase I trial of multidrug resistance-associated protein 3-derived peptide in patients with hepatocellular carcinoma. Cancer Lett. 2015;. doi:10.1016/j.canlet.2015.08.020.

    Google Scholar 

  94. Greten TF, Forner A, Korangy F, N’Kontchou G, Barget N, Ayuso C, Ormandy LA, Manns MP, Beaugrand M, Bruix J. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer. 2010;10:209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Buonaguro L, Petrizzo A, Tagliamonte M, Tornesello ML, Buonaguro FM. Challenges in cancer vaccine development for hepatocellular carcinoma. J Hepatol. 2013;59:897–903.

    Article  CAS  PubMed  Google Scholar 

  96. Sun L, Guo H, Jiang R, Lu L, Liu T, He X. Engineered cytotoxic T lymphocytes with AFP-specific TCR gene for adoptive immunotherapy in hepatocellular carcinoma. Tumour Biol J Int Soc Oncodev Biol Med. 2015;. doi:10.1007/s13277-015-3845-9.

    Google Scholar 

  97. Dargel C, Bassani-Sternberg M, Hasreiter J, et al. T cells engineered to express a T-cell receptor specific for glypican-3 to recognize and kill hepatoma cells in vitro and in mice. Gastroenterology. 2015;149:1042–52.

    Article  CAS  PubMed  Google Scholar 

  98. Qasim W, Brunetto M, Gehring AJ, et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J Hepatol. 2015;62:486–91.

    Article  CAS  PubMed  Google Scholar 

  99. Butterfield LH, Ribas A, Dissette VB, et al. A phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12:2817–25.

    Article  CAS  Google Scholar 

  100. Tada F, Abe M, Hirooka M, et al. Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Int J Oncol. 2012;41:1601–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee W-C, Wang H-C, Hung C-F, Huang P-F, Lia C-R, Chen M-F. Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: a clinical trial. J Immunother Hagerstown. 2005;28:496–504.

    Article  Google Scholar 

  102. Palmer DH, Midgley RS, Mirza N, Torr EE, Ahmed F, Steele JC, Steven NM, Kerr DJ, Young LS, Adams DH. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatol Baltim. 2009;49:124–32.

    Article  Google Scholar 

  103. Greten TF, Ormandy LA, Fikuart A, Höchst B, Henschen S, Hörning M, Manns MP, Korangy F. Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4+ T-cell responses in patients with advanced HCC. J Immunother Hagerstown. 2010;33:211–8.

    Article  CAS  Google Scholar 

  104. Pedroza-Gonzalez A, Verhoef C, Ijzermans JNM, Peppelenbosch MP, Kwekkeboom J, Verheij J, Janssen HLA, Sprengers D. Activated tumor-infiltrating CD4+ regulatory T cells restrain antitumor immunity in patients with primary or metastatic liver cancer. Hepatol Baltim. 2013;57:183–94.

    Article  CAS  Google Scholar 

  105. Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatol Baltim. 2014;60:1776–82.

    Article  CAS  Google Scholar 

  106. Sangro B, Gomez-Martin C, de la Mata M, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59:81–8.

    Article  CAS  PubMed  Google Scholar 

  107. Brower V. ASCO reveals additional promising results with immunotherapies. J Natl Cancer Inst. 2015;. doi:10.1093/jnci/djv295.

    PubMed Central  Google Scholar 

  108. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

    Article  PubMed  CAS  Google Scholar 

  109. Takayama T, Sekine T, Makuuchi M, et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet. 2000;356:802–7.

    Article  CAS  PubMed  Google Scholar 

  110. Shimizu K, Kotera Y, Aruga A, Takeshita N, Katagiri S, Ariizumi S, Takahashi Y, Yoshitoshi K, Takasaki K, Yamamoto M. Postoperative dendritic cell vaccine plus activated T-cell transfer improves the survival of patients with invasive hepatocellular carcinoma. Hum Vaccines Immunother. 2014;10:970–6.

    Article  Google Scholar 

  111. Lee JH, Lee J-H, Lim Y-S, et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology. 2015;148(1383–1391):e6.

    PubMed  Google Scholar 

  112. Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14:199–208.

    Article  CAS  PubMed  Google Scholar 

  113. Zerbini A, Pilli M, Fagnoni F, et al. Increased immunostimulatory activity conferred to antigen-presenting cells by exposure to antigen extract from hepatocellular carcinoma after radiofrequency thermal ablation. J Immunother Hagerstown. 2008;31:271–82.

    Article  Google Scholar 

  114. Zerbini A, Pilli M, Penna A, et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res. 2006;66:1139–46.

    Article  CAS  PubMed  Google Scholar 

  115. Mizukoshi E, Yamashita T, Arai K, Sunagozaka H, Ueda T, Arihara F, Kagaya T, Yamashita T, Fushimi K, Kaneko S. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatol Baltim. 2013;57:1448–57.

    Article  CAS  Google Scholar 

  116. Ali MY, Grimm CF, Ritter M, Mohr L, Allgaier H-P, Weth R, Bocher WO, Endrulat K, Blum HE, Geissler M. Activation of dendritic cells by local ablation of hepatocellular carcinoma. J Hepatol. 2005;43:817–22.

    Article  CAS  PubMed  Google Scholar 

  117. Zerbini A, Pilli M, Laccabue D, et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology. 2010;138:1931–42.

    Article  CAS  PubMed  Google Scholar 

  118. Ayaru L, Pereira SP, Alisa A, Pathan AA, Williams R, Davidson B, Burroughs AK, Meyer T, Behboudi S. Unmasking of alpha-fetoprotein-specific CD4(+) T cell responses in hepatocellular carcinoma patients undergoing embolization. J Immunol Baltim. 2007;178:1914–22.

    Article  CAS  Google Scholar 

  119. Zheng J, Sun B, Liu D, Yan L, Wang Y. Treatment with transcatheter arterial chemoembolization induces an increase of the L-selectin(low) CXCR3+CD8+ T cell subset in patients with hepatocellular carcinoma. OncoTargets Ther. 2012;5:103–9.

    Google Scholar 

  120. Nakamoto Y, Mizukoshi E, Kitahara M, et al. Prolonged recurrence-free survival following OK432-stimulated dendritic cell transfer into hepatocellular carcinoma during transarterial embolization. Clin Exp Immunol. 2011;163:165–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chen M-L, Yan B-S, Lu W-C, Chen M-H, Yu S-L, Yang P-C, Cheng A-L. Sorafenib relieves cell-intrinsic and cell-extrinsic inhibitions of effector T cells in tumor microenvironment to augment antitumor immunity. Int J Cancer J Int Cancer. 2014;134:319–31.

    Article  CAS  Google Scholar 

  122. Sprinzl MF, Reisinger F, Puschnik A, et al. Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatol Baltim. 2013;57:2358–68.

    Article  CAS  Google Scholar 

  123. Sprinzl MF, Puschnik A, Schlitter AM, et al. Sorafenib inhibits macrophage-induced growth of hepatoma cells by interference with insulin-like growth factor-1 secretion. J Hepatol. 2015;62:863–70.

    Article  CAS  PubMed  Google Scholar 

  124. Cabrera R, Ararat M, Xu Y, Brusko T, Wasserfall C, Atkinson MA, Chang LJ, Liu C, Nelson DR. Immune modulation of effector CD4+ and regulatory T cell function by sorafenib in patients with hepatocellular carcinoma. Cancer Immunol Immunother CII. 2013;62:737–46.

    Article  CAS  PubMed  Google Scholar 

  125. Chen Y, Ramjiawan RR, Reiberger T, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in Sorafenib-treated hepatocellular carcinoma in mice. Hepatol Baltim. 2015;61:1591–602.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Thimme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Flecken, T., Thimme, R. (2016). Role of the Immune System in Hepatocellular Carcinoma: Implications for Existing and Novel Therapies. In: Carr, B. (eds) Hepatocellular Carcinoma. Current Clinical Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-34214-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34214-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34212-2

  • Online ISBN: 978-3-319-34214-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics