Skip to main content

The PI3K-mTOR Pathway in Prostate Cancer: Biological Significance and Therapeutic Opportunities

  • Chapter
  • First Online:
  • 949 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Despite the recent development of new and improved surveillance and treatment strategies, lethal prostate cancer (PCa) phenotypes with castration resistance (CRPC) and metastatic lesions remain poorly understood. Evidence is emerging for the key role of the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway in CRPC, which is prevalently dysregulated in advanced PCa. Preclinical studies have revealed a mechanistic interplay between the PI3K/AKT/mTOR pathway and androgen receptor (AR) signaling, a master regulator governing PCa development and progression. The significance of the PI3K/AKT/mTOR pathway in integrating growth signals from crucial cellular events such as protein synthesis, energy metabolism, and cell proliferation and differentiation provides a clear rationale for the development of PI3K/mTOR inhibitors targeting this pathway. Relevant clinical trials offer great potential for clinical benefit. Here, we review the role of the PI3K/AKT/mTOR pathway in PCa and discuss the development and use of pathway inhibitors as single or combined therapies, and highlight ongoing clinical trials for the treatment of PCa.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  2. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T et al (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 62:220–241

    Article  PubMed  Google Scholar 

  3. Schrecengost R, Knudsen KE (2013) Molecular pathogenesis and progression of prostate cancer. Semin Oncol 40:244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Katsogiannou M, Ziouziou H, Karaki S, Andrieu C, Henry de Villeneuve M, Rocchi P (2015) The hallmarks of castration-resistant prostate cancers. Cancer Treat Rev

    Google Scholar 

  5. Thibault C, Massard C (2015) New therapies in metastatic castration resistant prostate cancer. Bulletin du cancer

    Google Scholar 

  6. Helsen C, Van den Broeck T, Voet A, Prekovic S, Van Poppel H, Joniau S et al (2014) Androgen receptor antagonists for prostate cancer therapy. Endocr Relat Cancer 21:T105–T118

    Article  CAS  PubMed  Google Scholar 

  7. Bayne CE, Williams SB, Cooperberg MR, Gleave ME, Graefen M, Montorsi F et al. (2015) Treatment of the primary tumor in metastatic prostate cancer: current concepts and future perspectives. Eur Urol

    Google Scholar 

  8. Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol Off J Am Soc Clin Oncol 28:1075–1083

    Article  CAS  Google Scholar 

  9. Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:64

    Article  PubMed  PubMed Central  Google Scholar 

  10. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619

    Article  CAS  PubMed  Google Scholar 

  12. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bitting RL, Armstrong AJ (2013) Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocr Relat Cancer 20:R83–R99

    Article  CAS  PubMed  Google Scholar 

  15. Edlind MP, Hsieh AC (2014) PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J Androl 16:378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carpenter CL, Auger KR, Chanudhuri M, Yoakim M, Schaffhausen B, Shoelson S et al (1993) Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J Biol Chem 268:9478–9483

    CAS  PubMed  Google Scholar 

  17. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ et al (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532

    Article  CAS  PubMed  Google Scholar 

  18. Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A et al (1991) Cloning of PI3Kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65:83–90

    Article  CAS  PubMed  Google Scholar 

  19. Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT (1994) A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell 77:83–93

    Article  CAS  PubMed  Google Scholar 

  20. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol CB 7:261–269

    Article  CAS  PubMed  Google Scholar 

  21. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wiza C, Nascimento EB, Ouwens DM (2012) Role of PRAS40 in Akt and mTOR signaling in health and disease. Am J Physiol Endocrinol Metab 302:E1453–E1460

    Article  CAS  PubMed  Google Scholar 

  23. Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493:338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR (1999) Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 59:4291–4296

    CAS  PubMed  Google Scholar 

  26. Yoshimoto M, Cunha IW, Coudry RA, Fonseca FP, Torres CH, Soares FA et al (2007) FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. Br J Cancer 97:678–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lotan TL, Gurel B, Sutcliffe S, Esopi D, Liu W, Xu J et al (2011) PTEN protein loss by immunostaining: analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients. Clin Cancer Res Off J Am Assoc Cancer Res 17:6563–6573

    Article  CAS  Google Scholar 

  28. Dai B, Kong YY, Ye DW, Ma CG, Zhou X, Yao XD (2009) Activation of the mammalian target of rapamycin signalling pathway in prostate cancer and its association with patient clinicopathological characteristics. BJU Int 104:1009–1016

    Article  CAS  PubMed  Google Scholar 

  29. Chu GC, Zhau HE, Wang R, Rogatko A, Feng X, Zayzafoon M et al (2014) RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr Relat Cancer 21:311–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  CAS  PubMed  Google Scholar 

  31. Kim J, Roh M, Doubinskaia I, Algarroba GN, Eltoum IE, Abdulkadir SA (2012) A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53. Oncogene 31:322–332

    Article  CAS  PubMed  Google Scholar 

  32. Chu GC, Chung LW (2014) RANK-mediated signaling network and cancer metastasis. Cancer Metastasis Rev 33:497–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Q, Li Q, Nuccio J, Liu C, Duan P, Wang R, et al (2015) Metastasis initiating cells in primary prostate cancer tissues from transurethral resection of the prostate (TURP) predicts castration-resistant progression and survival of prostate cancer patients. Prostate 75(12):1312–1321

    Google Scholar 

  34. Ziaee S, Chu GY, Huang J, Sieh S, Chung LW (2015) Prostate cancer metastasis: roles of recruitment and reprogramming, cell signal network and three-dimensional growth characteristics. Transl Androl Urol

    Google Scholar 

  35. Majumder PK, Yeh JJ, George DJ, Febbo PG, Kum J, Xue Q et al (2003) Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proc Natl Acad Sci USA 100:7841–7846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19:348–355

    Google Scholar 

  37. Freeman DJ, Li AG, Wei G, Li HH, Kertesz N, Lesche R et al (2003) PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 3:117–130

    Article  CAS  PubMed  Google Scholar 

  38. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J et al (2003) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4:209–221

    Article  CAS  PubMed  Google Scholar 

  39. Mirantes C, Eritja N, Dosil MA, Santacana M, Pallares J, Gatius S et al (2013) An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias. Dis Models Mech 6:710–720

    Article  CAS  Google Scholar 

  40. Luchman HA, Benediktsson H, Villemaire ML, Peterson AC, Jirik FR (2008) The pace of prostatic intraepithelial neoplasia development is determined by the timing of Pten tumor suppressor gene excision. PLoS ONE 3:e3940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nardella C, Carracedo A, Alimonti A, Hobbs RM, Clohessy JG, Chen Z et al (2009) Differential requirement of mTOR in postmitotic tissues and tumorigenesis. Sci Signal 2:ra2

    Google Scholar 

  42. Nardella C, Chen Z, Salmena L, Carracedo A, Alimonti A, Egia A et al (2008) Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev 22:2172–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH et al (2009) mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 15:148–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blando J, Portis M, Benavides F, Alexander A, Mills G, Dave B et al (2009) PTEN deficiency is fully penetrant for prostate adenocarcinoma in C57BL/6 mice via mTOR-dependent growth. Am J Pathol 174:1869–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hong SW, Shin JS, Moon JH, Kim YS, Lee J, Choi EK et al (2014) NVP-BEZ235, a dual PI3K/mTOR inhibitor, induces cell death through alternate routes in prostate cancer cells depending on the PTEN genotype. Apoptosis Int J Programmed Cell Death 19:895–904

    Article  CAS  Google Scholar 

  46. Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM et al (2004) mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10:594–601

    Article  CAS  PubMed  Google Scholar 

  47. Zhang W, Haines BB, Efferson C, Zhu J, Ware C, Kunii K et al (2012) Evidence of mTOR activation by an AKT-independent mechanism provides support for the combined treatment of PTEN-deficient prostate tumors with mTOR and AKT inhibitors. Transl Oncol 5:422–429

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sutherland SI, Pe Benito R, Henshall SM, Horvath LG, Kench JG (2014) Expression of phosphorylated-mTOR during the development of prostate cancer. Prostate 74:1231–1239

    Google Scholar 

  49. Muller J, Ehlers A, Burkhardt L, Sirma H, Steuber T, Graefen M et al (2013) Loss of pSer2448-mTOR expression is linked to adverse prognosis and tumor progression in ERG-fusion-positive cancers. Int J Cancer 132:1333–1340

    Article  PubMed  CAS  Google Scholar 

  50. Balk SP (2002) Androgen receptor as a target in androgen-independent prostate cancer. Urology 60:132–138 (discussion 8–9)

    Google Scholar 

  51. Gelmann EP (2002) Molecular biology of the androgen receptor. J Clinical Oncol Off J Am Soc Clin Oncol 20:3001–3015

    Article  CAS  Google Scholar 

  52. Chang CS, Kokontis J, Liao ST (1988) Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science 240:324–326

    Article  CAS  PubMed  Google Scholar 

  53. Lubahn DB, Joseph DR, Sar M, Tan J, Higgs HN, Larson RE et al (1988) The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis and gene expression in prostate. Mol Endocrinol 2:1265–1275

    Article  CAS  PubMed  Google Scholar 

  54. Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J et al (1997) Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 57:314–319

    CAS  PubMed  Google Scholar 

  55. Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM et al (2011) Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res Off J Am Assoc Cancer Res 17:5913–5925

    Article  CAS  Google Scholar 

  56. Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A et al (2010) Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natlional Acad Sci USA 107:16759–16765

    Article  CAS  Google Scholar 

  57. Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y et al (2013) Punctuated evolution of prostate cancer genomes. Cell 153:666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39

    Article  PubMed  CAS  Google Scholar 

  59. Jiao J, Wang S, Qiao R, Vivanco I, Watson PA, Sawyers CL et al (2007) Murine cell lines derived from Pten null prostate cancer show the critical role of PTEN in hormone refractory prostate cancer development. Cancer Res 67:6083–6091

    Article  CAS  PubMed  Google Scholar 

  60. Mulholland DJ, Tran LM, Li Y, Cai H, Morim A, Wang S et al (2011) Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19:792–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sato N, Sadar MD, Bruchovsky N, Saatcioglu F, Rennie PS, Sato S et al (1997) Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP. J Biol Chem 272:17485–17494

    Article  CAS  PubMed  Google Scholar 

  62. Gitenay D, Baron VT (2009) Is EGR1 a potential target for prostate cancer therapy? Future Oncol 5:993–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alberti C (2008) Genetic and microenvironmental implications in prostate cancer progression and metastasis. Eur Rev Med Pharmacol Sci 12:167–175

    CAS  PubMed  Google Scholar 

  64. Taddei ML, Giannoni E, Comito G, Chiarugi P (2013) Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett 341:80–96

    Article  CAS  PubMed  Google Scholar 

  65. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S et al (2011) Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mellinghoff IK, Vivanco I, Kwon A, Tran C, Wongvipat J, Sawyers CL (2004) HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell 6:517–527

    Article  CAS  PubMed  Google Scholar 

  67. Hodgson MC, Shao LJ, Frolov A, Li R, Peterson LE, Ayala G et al (2011) Decreased expression and androgen regulation of the tumor suppressor gene INPP4B in prostate cancer. Cancer Res 71:572–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schwartz S, Wongvipat J, Trigwell CB, Hancox U, Carver BS, Rodrik-Outmezguine V et al (2015) Feedback suppression of PI3Kα signaling in PTEN-mutated tumors is relieved by selective inhibition of PI3Kβ. Cancer Cell 27:109–122

    Article  CAS  PubMed  Google Scholar 

  69. Sircar K, Yoshimoto M, Monzon FA, Koumakpayi IH, Katz RL, Khanna A et al (2009) PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. J Pathol 218:505–513

    Article  CAS  PubMed  Google Scholar 

  70. Thomas C, Lamoureux F, Crafter C, Davies BR, Beraldi E, Fazli L et al (2013) Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo. Mol Cancer Ther 12:2342–2355

    Article  CAS  PubMed  Google Scholar 

  71. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68:5469–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E et al (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69:16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H et al (2009) A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69:2305–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA et al (2010) Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 120:2715–2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mediwala SN, Sun H, Szafran AT, Hartig SM, Sonpavde G, Hayes TG et al (2013) The activity of the androgen receptor variant AR-V7 is regulated by FOXO1 in a PTEN-PI3K-AKT-dependent way. Prostate 73:267–277

    Article  CAS  PubMed  Google Scholar 

  76. Jiang F, Wang Z (2004) Identification and characterization of PLZF as a prostatic androgen-responsive gene. Prostate 59:426–435

    Article  CAS  PubMed  Google Scholar 

  77. Cao J, Zhu S, Zhou W, Li J, Liu C, Xuan H et al (2013) PLZF mediates the PTEN/AKT/FOXO3a signaling in suppression of prostate tumorigenesis. PLoS ONE 8:e77922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fang Z, Zhang T, Dizeyi N, Chen S, Wang H, Swanson KD et al (2012) Androgen receptor enhances p27 degradation in prostate cancer cells through rapid and selective TORC2 activation. J Biol Chem 287:2090–2098

    Article  CAS  PubMed  Google Scholar 

  79. Jin Y, Qu S, Tesikova M, Wang L, Kristian A, Maelandsmo GM et al (2013) Molecular circuit involving KLK4 integrates androgen and mTOR signaling in prostate cancer. Proc Natl Acad Sci USA 110:E2572–E2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kobayashi T, Shimizu Y, Terada N, Yamasaki T, Nakamura E, Toda Y et al (2010) Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation. Prostate 70:866–874

    CAS  PubMed  Google Scholar 

  81. Schayowitz A, Sabnis G, Goloubeva O, Njar VC, Brodie AM (2010) Prolonging hormone sensitivity in prostate cancer xenografts through dual inhibition of AR and mTOR. Br J Cancer 103:1001–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu Y, Chen SY, Ross KN, Balk SP (2006) Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res 66:7783–7792

    Article  CAS  PubMed  Google Scholar 

  83. Wang Q, Bailey CG, Ng C, Tiffen J, Thoeng A, Minhas V et al (2011) Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res 71:7525–7536

    Article  CAS  PubMed  Google Scholar 

  84. Wu Y, Chhipa RR, Cheng J, Zhang H, Mohler JL, Ip C (2010) Androgen receptor-mTOR crosstalk is regulated by testosterone availability: implication for prostate cancer cell survival. Anticancer Res 30:3895–3901

    CAS  PubMed  PubMed Central  Google Scholar 

  85. De Velasco MA, Tanaka M, Yamamoto Y, Hatanaka Y, Koike H, Nishio K et al (2014) Androgen deprivation induces phenotypic plasticity and promotes resistance to molecular targeted therapy in a PTEN-deficient mouse model of prostate cancer. Carcinogenesis 35:2142–2153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Chandarlapaty S (2012) Negative feedback and adaptive resistance to the targeted therapy of cancer. Cancer Discov 2:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, Moskatel E et al (2011) mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov 1:248–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nandana S, Chung LW (2014) Prostate cancer progression and metastasis: potential regulatory pathways for therapeutic targeting. Am J Clin Exp Urol 2:92–101

    PubMed  PubMed Central  Google Scholar 

  90. Tsai JH, Yang J (2013) Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 27:2192–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gajula RP, Chettiar ST, Williams RD, Nugent K, Kato Y, Wang H et al (2015) Structure-function studies of the bHLH phosphorylation domain of TWIST1 in prostate cancer cells. Neoplasia 17:16–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu JB, Shao C, Li X, Li Q, Hu P, Shi C et al (2014) Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis. J Clin Invest 124:2891–2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Su B, Gao L, Baranowski C, Gillard B, Wang J, Ransom R et al (2014) A genome-wide RNAi screen identifies FOXO4 as a metastasis-suppressor through counteracting PI3K/AKT signal pathway in prostate cancer. PLoS ONE 9:e101411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Graham TR, Odero-Marah VA, Chung LW, Agrawal KC, Davis R, Abdel-Mageed AB (2009) PI3K/Akt-dependent transcriptional regulation and activation of BMP-2-Smad signaling by NF-κB in metastatic prostate cancer cells. Prostate 69:168–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J et al (2012) Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res 72:1878–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A et al (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M et al (2011) mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 71:3246–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu L, Li F, Cardelli JA, Martin KA, Blenis J, Huang S (2006) Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene 25:7029–7040

    Article  CAS  PubMed  Google Scholar 

  99. Chen X, Cheng H, Pan T, Liu Y, Su Y, Ren C et al (2014) mTOR regulate EMT through RhoA and Rac1 pathway in prostate cancer. Mol Carcinog

    Google Scholar 

  100. Siu MK, Tsai YC, Chang YS, Yin JJ, Suau F, Chen WY et al (2014) Transforming growth factor-β promotes prostate bone metastasis through induction of microRNA-96 and activation of the mTOR pathway. Oncogene

    Google Scholar 

  101. Li H, Tang DG (2011) Prostate cancer stem cells and their potential roles in metastasis. J Surg Oncol 103:558–562

    Article  PubMed  Google Scholar 

  102. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    Article  CAS  PubMed  Google Scholar 

  103. Glinsky GV (2005) Death-from-cancer signatures and stem cell contribution to metastatic cancer. Cell Cycle 4:1171–1175

    Article  CAS  PubMed  Google Scholar 

  104. Glinsky GV, Berezovska O, Glinskii AB (2005) Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115:1503–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-Echeverria C et al (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA 106:268–273

    Article  CAS  PubMed  Google Scholar 

  106. Marhold M, Tomasich E, El-Gazzar A, Heller G, Spittler A, Horvat R et al (2015) HIF1α Regulates mTOR signaling and viability of prostate cancer stem cells. Mol Cancer Res MCR 13:556–564

    Article  CAS  PubMed  Google Scholar 

  107. Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D et al (2012) Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther 11:317–328

    Article  CAS  PubMed  Google Scholar 

  108. Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D et al (2012) Phase I, dose-escalation study of BKM120, an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol Off J Am Soc Clin Oncol 30:282–290

    Article  CAS  Google Scholar 

  109. Ackermann TF, Hortnagl H, Wolfer DP, Colacicco G, Sohr R, Lang F et al (2008) Phosphatidylinositide dependent kinase deficiency increases anxiety and decreases GABA and serotonin abundance in the amygdala. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 22:735–744

    Article  CAS  Google Scholar 

  110. Shapiro GI, Rodon J, Bedell C, Kwak EL, Baselga J, Brana I et al (2014) Phase I safety, pharmacokinetic, and pharmacodynamic study of SAR245408 (XL147), an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. Clin Cancer Res Off J Am Assoc Cancer Res 20:233–245

    Article  CAS  Google Scholar 

  111. Hong DS, Bowles DW, Falchook GS, Messersmith WA, George GC, O’Bryant CL et al (2012) A multicenter phase I trial of PX-866, an oral irreversible phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res Off J Am Assoc Cancer Res 18:4173–4182

    Article  CAS  Google Scholar 

  112. Wagner AJ, Von Hoff DH, LoRusso PM, Tibes R, Mazina KE, Ware JA et al (2009) A first-in-human phase I study to evaluate the pan-PI3K inhibitor GDC-0941 administered QD or BID in patients with advanced solid tumors. In: 2009 ASCO annual meeting. South San Francisco 2009, p abstract 3501

    Google Scholar 

  113. Jia S, Liu Z, Zhang S, Liu P, Zhang L, Lee SH et al (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454:776–779

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Wee S, Wiederschain D, Maira SM, Loo A, Miller C, deBeaumont R et al (2008) PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci USA 105:13057–13062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O et al (2006) A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 125:733–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Galazi M, Rodriguez-Vida A, Ng T, Mason M, Chowdhury S (2014) Precision medicine for prostate cancer. Expert Rev Anticancer Ther 14:1305–1315

    Article  CAS  PubMed  Google Scholar 

  117. Janku F, Wheler JJ, Naing A, Falchook GS, Hong DS, Stepanek VM et al (2013) PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase clinical trials. Cancer Res 73:276–284

    Article  CAS  PubMed  Google Scholar 

  118. Fritsch CM, Schnell C, Chatenay-Rivauday C, Guthy DA, De Pover A, Wartmann M et al (2012) NVP-BYL719, a novel PI3Kalpha selective inhibitor with all the characteristics required for clinical development as an anti-cancer agent. In: The 103rd annual meeting of the American Association for Cancer Research. Chicago, IL, p abstract 3748

    Google Scholar 

  119. Jessen K, Kessler L, Kucharski J, Guo X, Staunton J, Janes M et al (2011) A potent and selective PI3K inhibitor, INK1117, targets human cancers harboring oncogenic PIK3CA mutations. In: The AACR-NCI-EORTC international conference: molecular targets and cancer therapeutics. San Francisco, CA 2011. p abstract A171

    Google Scholar 

  120. Gonzalez-Angulo AM, Juric D, Argiles G, Schellens JH, Burris HA, Berlin J et al (2013) Safety, pharmacokinetics, and preliminary activity of the alpha-specific PI3K inhibitor BYL719: Results from the first-in-human study. In: 2013 ASCO annual meeting. New York, NY, p abstract 2531

    Google Scholar 

  121. Festuccia C, Gravina GL, Muzi P, Millimaggi D, Dolo V, Vicentini C et al (2008) Akt down-modulation induces apoptosis of human prostate cancer cells and synergizes with EGFR tyrosine kinase inhibitors. Prostate 68:965–974

    Article  CAS  PubMed  Google Scholar 

  122. Floryk D, Thompson TC (2008) Perifosine induces differentiation and cell death in prostate cancer cells. Cancer Lett 266:216–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chee KG, Longmate J, Quinn DI, Chatta G, Pinski J, Twardowski P et al (2007) The AKT inhibitor perifosine in biochemically recurrent prostate cancer: a phase II California/Pittsburgh cancer consortium trial. Clinical Genitourin Cancer 5:433–437

    Article  CAS  Google Scholar 

  124. Posadas EM, Gulley J, Arlen PM, Trout A, Parnes HL, Wright J et al (2005) A phase II study of perifosine in androgen independent prostate cancer. Cancer Biol Ther 4:1133–1137

    Article  CAS  PubMed  Google Scholar 

  125. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K et al (2010) MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 9:1956–1967

    Article  CAS  PubMed  Google Scholar 

  126. Yap TA, Yan L, Patnaik A, Fearen I, Olmos D, Papadopoulos K et al (2011) First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol Off J Am Soc Clin Oncol 29:4688–4695

    Article  CAS  Google Scholar 

  127. Toren P, Kim S, Cordonnier T, Crafter C, Davies BR, Fazli L et al (2015) Combination AZD5363 with enzalutamide significantly delays enzalutamide-resistant prostate cancer in preclinical models. Eur Urol 67:986–990

    Article  CAS  PubMed  Google Scholar 

  128. Banerji U, Ranson M, Schellens JH, Esaki T, Dean E, Zivi A et al (2013) Results of two phase I multicenter trials of AZD5363, an inhibitor of AKT1, 2 and 3: biomarker and early clinical evaluation in Western and Japanese patients with advanced solid tumors. In: The 104th annual meeting of the American Association of Cancer Research. Washington, DC, p abstract LB-66

    Google Scholar 

  129. Vasudevan KM, Barbie DA, Davies MA, Rabinovsky R, McNear CJ, Kim JJ et al (2009) AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell 16:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Amato RJ, Jac J, Mohammad T, Saxena S (2008) Pilot study of rapamycin in patients with hormone-refractory prostate cancer. Clin Genitourin Cancer 6:97–102

    Article  CAS  PubMed  Google Scholar 

  131. Templeton A, Rothermundt C, Cathomas R, Baertschi D, Droege C, Gautschi O et al (2011) Everolimus as first-line therapy in non-rapidly progressive metastatic castration resistant prostate cancer (mCRPC): a multicenter phase II trial (SAKK 08/08). In: 2011 ASCO annual meeting. Chicago, IL, p abstract 4588

    Google Scholar 

  132. Armstrong AJ, Netto GJ, Rudek MA, Halabi S, Wood DP, Creel PA et al (2010) A pharmacodynamic study of rapamycin in men with intermediate- to high-risk localized prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res 16:3057–3066

    Article  CAS  Google Scholar 

  133. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  CAS  PubMed  Google Scholar 

  134. Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603

    Article  CAS  PubMed  Google Scholar 

  135. Dibble CC, Asara JM, Manning BD (2009) Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 29:5657–5670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A et al (2010) eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci USA 107:14134–14139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Benjamin D, Colombi M, Moroni C, Hall MN (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 10:868–880

    Article  CAS  PubMed  Google Scholar 

  138. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D et al (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7:e38

    Article  PubMed  CAS  Google Scholar 

  139. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y et al (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023–8032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wallin JJ, Edgar KA, Guan J, Berry M, Prior WW, Lee L et al (2011) GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol Cancer Ther 10:2426–2436

    Article  CAS  PubMed  Google Scholar 

  141. Wagner AJ, Bendell JC, Dolly JA, Morgan JA, Ware JA, Fredrickson J et al (2011) A first-in-human phase I study to evaluate GDC-0980, an oral PI3K/mTOR inhibitor, administered QD in patients with advanced solid tumors. In: 2011 ASCO annual meeting. Chicago, IL, p abstract 3020

    Google Scholar 

  142. Burris H, Rodon J, Sharma S, Herbst RS, Tabernero J, Infante JR et al (2010) First-in-human phase I study of the oral PI3K inhibitor BEZ235 in patients (pts) with advanced solid tumors. In: 2010 ASCO annual meeting. Chicago, IL, p abstract 3005

    Google Scholar 

  143. Siegel AP, Bryce AH, Lin AM, Friedlander TW, Hsieh AC, Hang E et al (2014) Results of a multicenter phase I/II trial of abiraterone acetate plus BEZ235 in metastatic, castration-resistant prostate cancer (mCRPC). In: 2014 ASCO annual meeting. Chicago, IL, p abstract e16042

    Google Scholar 

  144. Wu J, Pan D, Chung LW (2013) Near-infrared fluoresence and nuclear imaging and targeting of prostate cancer. Transl Androl Urol 2:254–264

    PubMed  PubMed Central  Google Scholar 

  145. Wu JB, Lin TP, Gallagher JD, Kushal S, Chung LW, Zhau HE et al (2015) Monoamine oxidase a inhibitor-near-infrared dye conjugate reduces prostate tumor growth. J Am Chem Soc 137:2366–2374

    Article  CAS  PubMed  Google Scholar 

  146. Wu JB, Shao C, Li X, Shi C, Li Q, Hu P et al (2014) Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1alpha/OATPs signaling axis. Biomaterials 35:8175–8185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yang X, Shi C, Tong R, Qian W, Zhau HE, Wang R et al (2010) Near IR heptamethine cyanine dye-mediated cancer imaging. Clin Cancer Res Off J Am Assoc Cancer Res 16:2833–2844

    Article  CAS  Google Scholar 

  148. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Beltran H, Tagawa ST, Park K, MacDonald T, Milowsky MI, Mosquera JM et al (2012) Challenges in recognizing treatment-related neuroendocrine prostate cancer. J Clin Oncol Off J Am Soc Clin Oncol 30:e386–e389

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leland W.K. Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, J.B., Chung, L.W. (2016). The PI3K-mTOR Pathway in Prostate Cancer: Biological Significance and Therapeutic Opportunities. In: Dey, N., De, P., Leyland-Jones, B. (eds) PI3K-mTOR in Cancer and Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-34211-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34211-5_9

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-34209-2

  • Online ISBN: 978-3-319-34211-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics