Skip to main content

PI3K-AKT-mTOR Pathway Cooperates with the DNA Damage Repair Pathway: Carcinogenesis in Triple-Negative Breast Cancers and Beyond

  • Chapter
  • First Online:
PI3K-mTOR in Cancer and Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Understanding of the biology of tumor cells of breast cancers like most of other solid tumors has undergone an evolutionary change at the molecular level with the advent of exome sequencing or whole genome sequencing technology. In today’s “clinic to laboratory and back” culture of medical practice, the genomics alteration-driven (biomarker) approach to cancer treatment has not only provided a better justification for the treatment of breast cancers but also added an invaluable tool for the diagnosis of “cancer evolution” and its therapeutic management. Recognizing the fact that the PI3K-mTOR pathway is a master regulator of tumor cell survival, proliferation, nutrient sensor, protein translation, metabolism, metastasis-associated phenotypes and angiogenesis, the PI3K pathway has been explored as one of the most studied targets in cancers. We here evaluated merits of the combination of DNA damage repair pathway inhibitor(s) with inhibitor(s) of the PI3K-mTOR pathway in targeting basal-like and triple-negative breast cancers. Sensitizing triple-negative breast cancer cells to inhibitors of DNA damage repair pathway by inhibitors of PI3K-mTOR pathway has been comprehensively discussed in the light of recent studies demonstrating that PI3K-AKT-mTOR pathway closely cooperates with the DNA damage repair pathway.

Review Criteria

The information for this chapter is compiled in part by searching the PubMed database for articles those are published before January 2016. Electronic early release publications listed in these databases are also included. Only articles published in English are considered. The search terms used included “Breast cancer” in association with the following search terms: “Apoptosis,” “proliferation,” “prognosis,” “cell signaling pathways,” “resistance,” “senescence,” “biomarkers,” “DNA Damage,” “DNA Damage Repair pathway,” “Triple-Negative Breast Cancer,” “HRD signature,” “PI3K-AKT-mTOR inhibitors,” “Basal-type Breast Cancer,” “PI3K-mTOR Pathway,” “chemotherapy,” “PARP inhibitor,” “BRCA1/BRCA2,” and “therapeutics.” These search terms are also used to search the abstracts from annual meetings and symposia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramson VG, Lehmann BD, Ballinger TJ, Pietenpol JA (2015) Subtyping of triple-negative breast cancer: implications for therapy. Cancer 121(1):8–16

    Article  PubMed  Google Scholar 

  2. Al-Ejeh F, Kumar R, Wiegmans A, Lakhani SR, Brown MP, Khanna KK (2010) Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes. Oncogene 29(46):6085–6098

    Article  CAS  PubMed  Google Scholar 

  3. Alluri P, Newman LA (2014) Basal-like and triple-negative breast cancers: searching for positives among many negatives. Surg Oncol Clin N Am 23(3):567–577

    Article  PubMed  PubMed Central  Google Scholar 

  4. Amin O, Beauchamp MC, Nader PA, Laskov I, Iqbal S, Philip CA, Yasmeen A, Gotlieb WH (2015) Suppression of Homologous Recombination by insulin-like growth factor-1 inhibition sensitizes cancer cells to PARP inhibitors. BMC Cancer 15:817

    Article  PubMed  PubMed Central  Google Scholar 

  5. Anders CK, Winer EP, Ford JM, Dent R, Silver DP, Sledge GW, Carey LA (2010) Poly(ADP-Ribose) polymerase inhibition: “targeted” therapy for triple-negative breast cancer. Clin Cancer Res 16(19):4702–4710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andre F, Zielinski CC (2012) Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Ann Oncol 23(Suppl 6): vi46–vi51

    Google Scholar 

  7. Ang JE, Gourley C, Powell CB, High H, Shapira-Frommer R, Castonguay V, De Greve J, Atkinson T, Yap TA, Sandhu S, Banerjee S, Chen LM, Friedlander ML, Kaufman B, Oza AM, Matulonis U, Barber LJ, Kozarewa I, Fenwick K, Assiotis I, Campbell J, Chen L, de Bono JS, Gore ME, Lord CJ, Ashworth A, Kaye SB (2013) Efficacy of chemotherapy in BRCA1/2 mutation carrier ovarian cancer in the setting of PARP inhibitor resistance: a multi-institutional study. Clin Cancer Res 19(19):5485–5493

    Article  CAS  PubMed  Google Scholar 

  8. Arnedos M, Bihan C, Delaloge S, Andre F (2012) Triple-negative breast cancer: are we making headway at least? Ther Adv Med Oncol 4(4):195–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bajrami I, Kigozi A, Van Weverwijk A, Brough R, Frankum J, Lord CJ, Ashworth A (2012) Synthetic lethality of PARP and NAMPT inhibition in triple-negative breast cancer cells. EMBO Mol Med 4(10):1087–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F, Beck JT, Ito Y, Yardley D, Deleu I, Perez A, Bachelot T, Vittori L, Xu Z, Mukhopadhyay P, Lebwohl D, Hortobagyi GN (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6):520–529

    Article  CAS  PubMed  Google Scholar 

  11. Bassi C, Ho J, Srikumar T, Dowling RJ, Gorrini C, Miller SJ, Mak TW, Neel BG, Raught B, Stambolic V (2013) Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science 341(6144):395–399

    Article  CAS  PubMed  Google Scholar 

  12. Bernardi R, Gianni L (2014) Hallmarks of triple negative breast cancer emerging at last? Cell Res 24(8):904–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhute VJ, Palecek SP (2015) Metabolic responses induced by DNA damage and poly (ADP-ribose) polymerase (PARP) inhibition in MCF-7 cells. Metabolomics 11(6):1779–1791

    Article  CAS  PubMed  Google Scholar 

  14. Bridges KA, Toniatti C, Buser CA, Liu H, Buchholz TA, Meyn RE (2014) Niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase inhibitor, radiosensitizes human lung and breast cancer cells. Oncotarget 5(13):5076–5086

    Article  PubMed  PubMed Central  Google Scholar 

  15. Brown KK, Montaser-Kouhsari L, Beck AH, Toker A (2015) MERIT40 Is an Akt substrate that promotes resolution of DNA damage induced by chemotherapy. Cell Rep 11(9):1358–1366

    Article  CAS  PubMed  Google Scholar 

  16. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917

    Article  CAS  PubMed  Google Scholar 

  17. Burgess M, Puhalla S (2014) BRCA 1/2-mutation related and sporadic breast and ovarian cancers: more alike than different. Front Oncol 4:19

    PubMed  PubMed Central  Google Scholar 

  18. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, Mills GB, Lau CC, Brown PH (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21(7):1688–1698

    Article  CAS  PubMed  Google Scholar 

  19. Calabrese CR, Batey MA, Thomas HD, Durkacz BW, Wang LZ, Kyle S, Skalitzky D, Li J, Zhang C, Boritzki T, Maegley K, Calvert AH, Hostomsky Z, Newell DR, Curtin NJ (2003) Identification of potent nontoxic poly(ADP-Ribose) polymerase-1 inhibitors: chemopotentiation and pharmacological studies. Clin Cancer Res 9(7):2711–2718

    CAS  PubMed  Google Scholar 

  20. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Google Scholar 

  21. Cardnell RJ, Feng Y, Diao L, Fan YH, Masrorpour F, Wang J, Shen Y, Mills GB, Minna JD, Heymach JV, Byers LA (2013) Proteomic markers of DNA repair and PI3K pathway activation predict response to the PARP inhibitor BMN 673 in small cell lung cancer. Clin Cancer Res 19(22):6322–6328

    Article  CAS  PubMed  Google Scholar 

  22. Carey LA (2011) Novel targets for triple-negative breast cancer. Clin Adv Hematol Oncol 9(9):678–680

    PubMed  Google Scholar 

  23. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF (2008) The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8(3):187–198

    Article  CAS  PubMed  Google Scholar 

  24. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    Article  PubMed  Google Scholar 

  25. Chen JH, Zhang P, Chen WD, Li DD, Wu XQ, Deng R, Jiao L, Li X, Ji J, Feng GK, Zeng YX, Jiang JW, Zhu XF (2015) ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells. Autophagy 11(2):239–252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chen X, Li J, Gray WH, Lehmann BD, Bauer JA, Shyr Y, Pietenpol JA (2012) TNBCtype: a subtyping tool for triple-negative breast cancer. Cancer Inform 11:147–156

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ciruelos Gil EM (2014) Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treat Rev 40(7):862–871

    Article  CAS  PubMed  Google Scholar 

  28. Comen EA, Robson M (2010) Poly(ADP-ribose) polymerase inhibitors in triple-negative breast cancer. Cancer J 16(1):48–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cornen S, Guille A, Adelaide J, Addou-Klouche L, Finetti P, Saade MR, Manai M, Carbuccia N, Bekhouche I, Letessier A, Raynaud S, Charafe-Jauffret E, Jacquemier J, Spicuglia S, de The H, Viens P, Bertucci F, Birnbaum D, Chaffanet M (2014) Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling. PLoS ONE 9(1):e81843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Crown J, O’Shaughnessy J, Gullo G (2012) Emerging targeted therapies in triple-negative breast cancer. Ann Oncol 23(Suppl 6):vi56–vi65

    Google Scholar 

  31. Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6(3):184–192

    Article  CAS  PubMed  Google Scholar 

  32. Curtin NJ, Wang LZ, Yiakouvaki A, Kyle S, Arris CA, Canan-Koch S, Webber SE, Durkacz BW, Calvert HA, Hostomsky Z, Newell DR (2004) Novel poly(ADP-ribose) polymerase-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair-deficient cells. Clin Cancer Res 10(3):881–889

    Article  CAS  PubMed  Google Scholar 

  33. Davidson D, Wang Y, Aloyz R, Panasci L (2013) The PARP inhibitor ABT-888 synergizes irinotecan treatment of colon cancer cell lines. Invest New Drugs 31(2):461–468

    Article  CAS  PubMed  Google Scholar 

  34. Davis WJ, Lehmann PZ, Li W (2015) Nuclear PI3K signaling in cell growth and tumorigenesis. Front Cell Dev Biol 3:24

    Article  PubMed  PubMed Central  Google Scholar 

  35. De Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH (2013) The elephant and the blind men: making sense of PARP inhibitors in homologous recombination deficient tumor cells. Front Oncol 3:228

    Article  PubMed  PubMed Central  Google Scholar 

  36. De P, Carlson J, Leyland-Jones B, Dey N (2014) Oncogenic nexus of cancerous inhibitor of protein phosphatase 2A (CIP2A): an oncoprotein with many hands. Oncotarget 5(13):4581–4602

    Article  PubMed  PubMed Central  Google Scholar 

  37. De P, Dey N, Leyland-Jones B (2013) Growth factor and signaling networks. Brenner’s encyclopedia of genetics. Elsevier Inc, Philadelphia

    Google Scholar 

  38. De P, Miskimins K, Dey N, Leyland-Jones B (2013) Promise of rapalogues versus mTOR kinase inhibitors in subset specific breast cancer: old targets new hope. Cancer Treat Rev 39(5):403–412

    Article  CAS  PubMed  Google Scholar 

  39. De P, Sun Y, Carlson JH, Friedman LS, Leyland-Jones BR, Dey N (2014) Doubling down on the PI3K-AKT-mTOR pathway enhances the antitumor efficacy of PARP inhibitor in triple negative breast cancer model beyond BRCA-ness. Neoplasia 16(1):43–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Delaney CA, Wang LZ, Kyle S, White AW, Calvert AH, Curtin NJ, Durkacz BW, Hostomsky Z, Newell DR (2000) Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Cancer Res 6(7):2860–2867

    CAS  PubMed  Google Scholar 

  41. Dey N, Leyland-Jones B, De P (2015) MYC-xing it up with PIK3CA mutation and resistance to PI3K inhibitors: summit of two giants in breast cancers. Am J Cancer Res 5(1):1–19

    PubMed  Google Scholar 

  42. Dey N, Smith BR, Leyland-Jones B (2012) Targeting basal-like breast cancers. Curr Drug Targets 13(12):1510–1524

    Article  CAS  PubMed  Google Scholar 

  43. Dey N, Sun Y, Carlson J, Friedman L, De P, Leyland-Jones B (2014) Anti-tumor efficacy of PI3K-mTOR pathway inhibitors in combination with PARP inhibitor plus carboplatin in BRCA1-competent TNBC, beyond PTEN: a proof of concept study. Thirty-Seventh Annual CTRC-AACR San Antonio Breast Cancer Symposium, San Antonio, TX, AACR

    Google Scholar 

  44. Difilippantonio S, Nussenzweig A (2007) The NBS1-ATM connection revisited. Cell Cycle 6(19):2366–2370

    Article  CAS  PubMed  Google Scholar 

  45. Dittrich A, Gautrey H, Browell D, Tyson-Capper A (2014) The HER2 signaling network in breast cancer-like a spider in its web. J Mammary Gland Biol Neoplasia

    Google Scholar 

  46. Dizdar O, Arslan C, Altundag K (2015) Advances in PARP inhibitors for the treatment of breast cancer. Expert Opin Pharmacother 16(18):2751–2758

    Article  CAS  PubMed  Google Scholar 

  47. Du Y, Yamaguchi H, Wei Y, Hsu JL, Wang HL, Hsu YH, Lin WC, Yu WH, Leonard PG, Lee GRT, Chen MK, Nakai K, Hsu MC, Chen CT, Sun Y, Wu Y, Chang WC, Huang WC, Liu CL, Chang YC, Chen CH, Park M, Jones P, Hortobagyi GN, Hung MC (2016) Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med

    Google Scholar 

  48. Dumont AG, Dumont SN, Trent JC (2012) The favorable impact of PIK3CA mutations on survival: an analysis of 2587 patients with breast cancer. Chin J Cancer 31(7):327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ellis MJ, Perou CM (2013) The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov 3(1):27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ellisen LW (2011) PARP inhibitors in cancer therapy: promise, progress, and puzzles. Cancer Cell 19(2):165–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Elster N, Cremona M, Morgan C, Toomey S, Carr A, O’Grady A, Hennessy BT, Eustace AJ (2015) A preclinical evaluation of the PI3K alpha/delta dominant inhibitor BAY 80-6946 in HER2-positive breast cancer models with acquired resistance to the HER2-targeted therapies trastuzumab and lapatinib. Breast Cancer Res Treat 149(2):373–383

    Article  CAS  PubMed  Google Scholar 

  52. Fang Y, Chai Z, Wang D, Kuang T, Wu W, Lou W (2015) DNA-PKcs deficiency sensitizes the human hepatoma HepG2 cells to cisplatin and 5-fluorouracil through suppression of the PI3K/Akt/NF-kappaB pathway. Mol Cell Biochem 399(1–2):269–278

    Article  CAS  PubMed  Google Scholar 

  53. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  CAS  PubMed  Google Scholar 

  54. Fedele CG, Ooms LM, Ho M, Vieusseux J, O’Toole SA, Millar EK, Lopez-Knowles E, Sriratana A, Gurung R, Baglietto L, Giles GG, Bailey CG, Rasko JE, Shields BJ, Price JT, Majerus PW, Sutherland RL, Tiganis T, McLean CA, Mitchell CA (2010) Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc Natl Acad Sci USA 107(51):22231–22236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361(2):123–134

    Article  CAS  PubMed  Google Scholar 

  56. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948

    Article  CAS  PubMed  Google Scholar 

  57. Fu X, Creighton CJ, Biswal NC, Kumar V, Shea M, Herrera S, Contreras A, Gutierrez C, Wang T, Nanda S, Giuliano M, Morrison G, Nardone A, Karlin KL, Westbrook TF, Heiser LM, Anur P, Spellman P, Guichard SM, Smith PD, Davies BR, Klinowska T, Lee AV, Mills GB, Rimawi MF, Hilsenbeck SG, Gray JW, Joshi A, Osborne CK, Schiff R (2014) Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase. Breast Cancer Res 16(5):430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Fu X, Osborne CK, Schiff R (2013) Biology and therapeutic potential of PI3K signaling in ER+/HER2-negative breast cancer. Breast 22(Suppl 2):S12–S18

    Article  PubMed  Google Scholar 

  59. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1.doi:10.1126/scisignal.2004088

    Google Scholar 

  60. Ghorbani A, Jeddi-Tehrani M, Saidpour A, Safa M, Bayat AA, Zand H (2015) PI3K/AKT and Mdm2 activation are associated with inhibitory effect of cAMP increasing agents on DNA damage-induced cell death in human pre-B NALM-6 cells. Arch Biochem Biophys 566:58–66

    Article  CAS  PubMed  Google Scholar 

  61. Gonzalez-Billalabeitia E, Seitzer N, Song SJ, Song MS, Patnaik A, Liu XS, Epping MT, Papa A, Hobbs RM, Chen M, Lunardi A, Ng C, Webster KA, Signoretti S, Loda M, Asara JM, Nardella C, Clohessy JG, Cantley LC, Pandolfi PP (2014) Vulnerabilities of PTEN-TP53-deficient prostate cancers to compound PARP-PI3K inhibition. Cancer Discov 4(8):896–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guo Z, Zhao J, Song L, Ma JX, Wang CJ, Pei SY, Jiang C, Li SB (2014) Induction of H2AX phosphorylation in tumor cells by gossypol acetic acid is mediated by phosphatidylinositol 3-kinase (PI3K) family. Cancer Cell Int 14(1):141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Henneman L, van Miltenburg MH, Michalak EM, Braumuller TM, Jaspers JE, Drenth AP, de Korte-Grimmerink R, Gogola E, Szuhai K, Schlicker A, Bin Ali R, Pritchard C, Huijbers IJ, Berns A, Rottenberg S, Jonkers J (2015) Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer. Proc Natl Acad Sci USA 112:8409–8414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hortobagyi GN (2015) Everolimus plus exemestane for the treatment of advanced breast cancer: a review of subanalyses from BOLERO-2. Neoplasia 17(3):279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hudis CA, Gianni L (2011) Triple-negative breast cancer: an unmet medical need. Oncologist 16(Suppl 1):1–11

    Article  PubMed  Google Scholar 

  66. Ibrahim YH, Garcia-Garcia C, Serra V, He L, Torres-Lockhart K, Prat A, Anton P, Cozar P, Guzman M, Grueso J, Rodriguez O, Calvo MT, Aura C, Diez O, Rubio IT, Perez J, Rodon J, Cortes J, Ellisen LW, Scaltriti M, Baselga J (2012) PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov 2(11):1036–1047

    Article  CAS  PubMed  Google Scholar 

  67. Ip LR, Poulogiannis G, Viciano FC, Sasaki J, Kofuji S, Spanswick VJ, Hochhauser D, Hartley JA, Sasaki T, Gewinner CA (2015) Loss of INPP4B causes a DNA repair defect through loss of BRCA1, ATM and ATR and can be targeted with PARP inhibitor treatment. Oncotarget 6(12):10548–10562

    Article  PubMed  PubMed Central  Google Scholar 

  68. Irshad S, Ashworth A, Tutt A (2011) Therapeutic potential of PARP inhibitors for metastatic breast cancer. Expert Rev Anticancer Ther 11(8):1243–1251

    Article  CAS  PubMed  Google Scholar 

  69. Isakoff SJ, Overmoyer B, Tung NM, Gelman RS, Giranda VL, Bernhard KM, Habin KR, Ellisen LW, Winer EP, Goss PE (2010) A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer. J Clin, Oncol

    Google Scholar 

  70. Jang NY, Kim DH, Cho BJ, Choi EJ, Lee JS, Wu HG, Chie EK, Kim IA (2015) Radiosensitization with combined use of olaparib and PI-103 in triple-negative breast cancer. BMC Cancer 15:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Jones N, Bonnet F, Sfar S, Lafitte M, Lafon D, Sierankowski G, Brouste V, Banneau G, Tunon de Lara C, Debled M, MacGrogan G, Longy M, Sevenet N (2013) Comprehensive analysis of PTEN status in breast carcinomas. Int J Cancer 133(2):323–334

    Article  CAS  PubMed  Google Scholar 

  72. Jones P, Wilcoxen K, Rowley M, Toniatti C (2015) Niraparib: a poly(ADP-ribose) polymerase (PARP) inhibitor for the treatment of tumors with defective homologous recombination. J Med Chem 58(8):3302–3314

    Article  CAS  PubMed  Google Scholar 

  73. Jordan NJ, Dutkowski CM, Barrow D, Mottram HJ, Hutcheson IR, Nicholson RI, Guichard SM, Gee JM (2014) Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro. Breast Cancer Res 16(1):R12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Jung IL, Kang HJ, Kim KC, Kim IG (2010) PTEN/pAkt/p53 signaling pathway correlates with the radioresponse of non-small cell lung cancer. Int J Mol Med 25(4):517–523

    CAS  PubMed  Google Scholar 

  75. Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmana J, Rajendran A, Papa A, Spencer K, Lyssiotis CA, Nardella C, Pandolfi PP, Baselga J, Scully R, Asara JM, Cantley LC, Wulf GM (2012) Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov 2(11):1048–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Karginova O, Siegel MB, Van Swearingen AE, Deal AM, Adamo B, Sambade MJ, Bazyar S, Nikolaishvili-Feinberg N, Bash R, O’Neal S, Sandison K, Parker JS, Santos C, Darr D, Zamboni W, Lee YZ, Miller CR, Anders CK (2015) Efficacy of carboplatin alone and in combination with ABT888 in intracranial murine models of BRCA-mutated and BRCA-wild-type triple-negative breast cancer. Mol Cancer Ther 14(4):920–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28(20):3271–3277

    Article  PubMed  Google Scholar 

  78. Kimbung S, Biskup E, Johansson I, Aaltonen K, Ottosson-Wadlund A, Gruvberger-Saal S, Cunliffe H, Fadeel B, Loman N, Berglund P, Hedenfalk I (2012) Co-targeting of the PI3K pathway improves the response of BRCA1 deficient breast cancer cells to PARP1 inhibition. Cancer Lett 319(2):232–241

    Article  CAS  PubMed  Google Scholar 

  79. Klempner SJ, Myers AP, Cantley LC (2013) What a tangled web we weave: emerging resistance mechanisms to inhibition of the phosphoinositide 3-kinase pathway. Cancer Discov 3(12):1345–1354

    Article  CAS  PubMed  Google Scholar 

  80. Krzystolik K, Jakubowska A, Gronwald J, Krawczynski MR, Drobek-Slowik M, Sagan L, Cyrylowski L, Lubinski W, Lubinski J, Cybulski C (2014) Large deletion causing von Hippel-Lindau disease and hereditary breast cancer syndrome. Hered Cancer Clin Pract 12(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kumar A, Fernandez-Capetillo O, Carrera AC (2010) Nuclear phosphoinositide 3-kinase beta controls double-strand break DNA repair. Proc Natl Acad Sci USA 107(16):7491–7496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kumar A, Redondo-Munoz J, Perez-Garcia V, Cortes I, Chagoyen M, Carrera AC (2011) Nuclear but not cytosolic phosphoinositide 3-kinase beta has an essential function in cell survival. Mol Cell Biol 31(10):2122–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kumler I, Tuxen MK, Nielsen DL (2014) A systematic review of dual targeting in HER2-positive breast cancer. Cancer Treat Rev 40(2):259–270

    Article  CAS  PubMed  Google Scholar 

  84. Le Du F, Eckhardt BL, Lim B, Litton JK, Moulder S, Meric-Bernstam F, Gonzalez-Angulo AM, Ueno NT (2015) Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? Oncotarget 6(15):12890–12908

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lee JM, Ledermann JA, Kohn EC (2014) PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann Oncol 25(1):32–40

    Article  PubMed  Google Scholar 

  86. Lees-Miller SP, Meek K (2003) Repair of DNA double strand breaks by non-homologous end joining. Biochimie 85(11):1161–1173

    Article  CAS  PubMed  Google Scholar 

  87. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lehmann BD, Pietenpol JA (2014) Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol 232(2):142–150

    Article  PubMed  PubMed Central  Google Scholar 

  89. Li HF, Kim JS, Waldman T (2009) Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells. Radiat Oncol 4:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lin Y, Kang T, Zhou BP (2014) Doxorubicin enhances Snail/LSD1-mediated PTEN suppression in a PARP1-dependent manner. Cell Cycle 13(11):1708–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lisby M, Rothstein R (2004) DNA damage checkpoint and repair centers. Curr Opin Cell Biol 16(3):328–334

    Article  CAS  PubMed  Google Scholar 

  92. Liu W, Zhou Y, Reske SN, Shen C (2008) PTEN mutation: many birds with one stone in tumorigenesis. Anticancer Res 28(6A):3613–3619

    CAS  PubMed  Google Scholar 

  93. Loi S, Haibe-Kains B, Majjaj S, Lallemand F, Durbecq V, Larsimont D, Gonzalez-Angulo AM, Pusztai L, Symmans WF, Bardelli A, Ellis P, Tutt AN, Gillett CE, Hennessy BT, Mills GB, Phillips WA, Piccart MJ, Speed TP, McArthur GA, Sotiriou C (2010) PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc Natl Acad Sci USA 107(22):10208–10213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Loibl S, von Minckwitz G, Schneeweiss A, Paepke S, Lehmann A, Rezai M, Zahm DM, Sinn P, Khandan F, Eidtmann H, Dohnal K, Heinrichs C, Huober J, Pfitzner B, Fasching PA, Andre F, Lindner JL, Sotiriou C, Dykgers A, Guo S, Gade S, Nekljudova V, Loi S, Untch M, Denkert C (2014) PIK3CA mutations are associated with lower rates of pathologic complete response to anti-human epidermal growth factor receptor 2 (her2) therapy in primary HER2-overexpressing breast cancer. J Clin Oncol 32(29):3212–3220

    Article  CAS  PubMed  Google Scholar 

  95. Majewski IJ, Nuciforo P, Mittempergher L, Bosma AJ, Eidtmann H, Holmes E, Sotiriou C, Fumagalli D, Jimenez J, Aura C, Prudkin L, Diaz-Delgado MC, de la Pena L, Loi S, Ellis C, Schultz N, de Azambuja E, Harbeck N, Piccart-Gebhart M, Bernards R, Baselga J (2015) PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J Clin Oncol 33(12):1334–1339

    Article  CAS  PubMed  Google Scholar 

  96. Mancini P, Angeloni A, Risi E, Orsi E, Mezi S (2014) Standard of care and promising new agents for triple negative metastatic breast cancer. Cancers (Basel) 6(4):2187–2223

    Article  CAS  Google Scholar 

  97. Manzano RG, Martinez-Navarro EM, Forteza J, Brugarolas A (2014) Microarray phosphatome profiling of breast cancer patients unveils a complex phosphatase regulatory role of the MAPK and PI3K pathways in estrogen receptor-negative breast cancers. Int J Oncol 45(6):2250–2266

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Manzoli FA, Capitani S, Maraldi NM, Cocco L, Barnabei O (1978) Chromatin lipids and their possible role in gene expression. A study in normal and neoplastic cells. Adv Enzyme Regul 17:175–194

    Article  CAS  PubMed  Google Scholar 

  99. Manzoli FA, Capitani S, Mazzotti G, Barnabei O, Maraldi NM (1982) Role of chromatin phospholipids on template availability and ultrastructure of isolated nuclei. Adv Enzyme Regul 20:247–262

    Article  CAS  PubMed  Google Scholar 

  100. Mariano G, Ricciardi MR, Trisciuoglio D, Zampieri M, Ciccarone F, Guastafierro T, Calabrese R, Valentini E, Tafuri A, Del Bufalo D, Caiafa P, Reale A (2015) PARP inhibitor ABT-888 affects response of MDA-MB-231 cells to doxorubicin treatment, targeting Snail expression. Oncotarget 6:15008

    Article  PubMed  PubMed Central  Google Scholar 

  101. Marme F, Schneeweiss A (2015) Targeted therapies in triple-negative breast cancer. Breast Care (Basel) 10(3):159–166

    Article  Google Scholar 

  102. Marty B, Maire V, Gravier E, Rigaill G, Vincent-Salomon A, Kappler M, Lebigot I, Djelti F, Tourdes A, Gestraud P, Hupe P, Barillot E, Cruzalegui F, Tucker GC, Stern MH, Thiery JP, Hickman JA, Dubois T (2008) Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer cells. Breast Cancer Res 10(6):R101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, Valero V, Lehmann BD, Pietenpol JA, Hortobagyi GN, Symmans WF, Ueno NT (2013) Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res 19(19):5533–5540

    Article  CAS  PubMed  Google Scholar 

  104. Mateo J, Ong M, Tan DS, Gonzalez MA, de Bono JS (2013) Appraising iniparib, the PARP inhibitor that never was–what must we learn? Nat Rev Clin Oncol 10(12):688–696

    Article  CAS  PubMed  Google Scholar 

  105. Mayer IA (2013) Subtyping of triple-negative breast cancer. Clin Adv Hematol Oncol 11(11):731–732

    PubMed  Google Scholar 

  106. Mayer IA, Abramson VG, Lehmann BD, Pietenpol JA (2014) New strategies for triple-negative breast cancer–deciphering the heterogeneity. Clin Cancer Res 20(4):782–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Metzger-Filho O, Tutt A, de Azambuja E, Saini KS, Viale G, Loi S, Bradbury I, Bliss JM, Azim HA Jr, Ellis P, Di Leo A, Baselga J, Sotiriou C, Piccart-Gebhart M (2012) Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol 30(15):1879–1887

    Article  CAS  PubMed  Google Scholar 

  108. Miknyoczki SJ, Jones-Bolin S, Pritchard S, Hunter K, Zhao H, Wan W, Ator M, Bihovsky R, Hudkins R, Chatterjee S, Klein-Szanto A, Dionne C, Ruggeri B (2003) Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol Cancer Ther 2(4):371–382

    CAS  PubMed  Google Scholar 

  109. Minami A, Nakanishi A, Ogura Y, Kitagishi Y, Matsuda S (2014) Connection between tumor suppressor BRCA1 and PTEN in damaged DNA repair. Front Oncol 4:318

    Article  PubMed  PubMed Central  Google Scholar 

  110. Minami D, Takigawa N, Takeda H, Takata M, Ochi N, Ichihara E, Hisamoto A, Hotta K, Tanimoto M, Kiura K (2013) Synergistic effect of olaparib with combination of cisplatin on PTEN-deficient lung cancer cells. Mol Cancer Res 11(2):140–148

    Article  CAS  PubMed  Google Scholar 

  111. Ming M, He YY (2012) PTEN in DNA damage repair. Cancer Lett 319(2):125–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mo W, Liu Q, Lin CC, Dai H, Peng Y, Liang Y, Peng G, Meric-Bernstam F, Mills GB, Li K, Lin SY (2016) mTOR inhibitors suppress homologous recombination repair and synergize with PARP inhibitors via regulating SUV39H1 in BRCA-proficient triple-negative breast cancer. Clin Cancer Res 22(7):1699–712. doi: 10.1158/1078-0432. CCR-15-1772. Epub 6 Nov 2015. PMID: 26546619, 1 Apr 2016

  113. Monteiro Ide P, Madureira P, de Vasconscelos A, Pozza DH, de Mello RA (2015) Targeting HER family in HER2-positive metastatic breast cancer: potential biomarkers and novel targeted therapies. Pharmacogenomics 16(3):257–271

    Article  PubMed  CAS  Google Scholar 

  114. Morales J, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, Gao J, Boothman DA (2014) Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24(1):15–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mukohara T (2015) PI3K mutations in breast cancer: prognostic and therapeutic implications. Breast Cancer (Dove Med Press) 7:111–123

    CAS  Google Scholar 

  116. Murai J, Zhang Y, Morris J, Ji J, Takeda S, Doroshow JH, Pommier Y (2014) Rationale for poly(ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition. J Pharmacol Exp Ther 349(3):408–416

    Article  PubMed  PubMed Central  Google Scholar 

  117. Norris RE, Adamson PC, Nguyen VT, Fox E (2014) Preclinical evaluation of the PARP inhibitor, olaparib, in combination with cytotoxic chemotherapy in pediatric solid tumors. Pediatr Blood Cancer 61(1):145–150

    Article  CAS  PubMed  Google Scholar 

  118. Nuciforo PG, Aura C, Holmes E, Prudkin L, Jimenez J, Martinez P, Ameels H, de la Pena L, Ellis C, Eidtmann H, Piccart-Gebhart MJ, Scaltriti M, Baselga J (2015) Benefit to neoadjuvant anti-human epidermal growth factor receptor 2 (HER2)-targeted therapies in HER2-positive primary breast cancer is independent of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) status. Ann Oncol 26(7):1494–1500

    CAS  PubMed  Google Scholar 

  119. O’Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, Koo IC, Sherman BM, Bradley C (2011) Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 364(3):205–214

    Article  PubMed  Google Scholar 

  120. O’Shaughnessy J, Schwartzberg L, Danso MA, Miller KD, Rugo HS, Neubauer M, Robert N, Hellerstedt B, Saleh M, Richards P, Specht JM, Yardley DA, Carlson RW, Finn RS, Charpentier E, Garcia-Ribas I, Winer EP (2014) Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol 32(34):3840–3847

    Article  PubMed  CAS  Google Scholar 

  121. Orlando L, Schiavone P, Fedele P, Calvani N, Nacci A, Cinefra M, D’Amico M, Mazzoni E, Marino A, Sponziello F, Morelli F, Lombardi L, Silvestris N, Cinieri S (2012) Poly (ADP-ribose) polymerase (PARP): rationale, preclinical and clinical evidences of its inhibition as breast cancer treatment. Expert Opin Ther Targets 16(Suppl 2):S83–S89

    Article  CAS  PubMed  Google Scholar 

  122. Pal SK, Childs BH, Pegram M (2011) Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat 125(3):627–636

    Article  CAS  PubMed  Google Scholar 

  123. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167

    Article  PubMed  PubMed Central  Google Scholar 

  124. Passeri D, Camaioni E, Liscio P, Sabbatini P, Ferri M, Carotti A, Giacche N, Pellicciari R, Gioiello A, Macchiarulo A (2015) Concepts and molecular aspects in the polypharmacology of PARP-1 inhibitors. ChemMedChem. doi: 10.1002/cmdc.201500391. [Epub ahead of print] PMID: 26424664, 1 Oct 2015

    Google Scholar 

  125. Paull TT (2015) Mechanisms of ATM activation. Annu Rev Biochem 84:711–738

    Article  CAS  PubMed  Google Scholar 

  126. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  127. Planchon SM, Waite KA, Eng C (2008) The nuclear affairs of PTEN. J Cell Sci 121(Pt 3):249–253

    Article  CAS  PubMed  Google Scholar 

  128. Plummer R (2011) Poly(ADP-ribose) polymerase inhibition: a new direction for BRCA and triple-negative breast cancer? Breast Cancer Res 13(4):218

    Article  PubMed  PubMed Central  Google Scholar 

  129. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Rehman FL, Lord CJ, Ashworth A (2012) The promise of combining inhibition of PI3K and PARP as cancer therapy. Cancer Discov 2(11):982–984

    Article  CAS  PubMed  Google Scholar 

  131. Ricks TK, Chiu HJ, Ison G, Kim G, McKee AE, Kluetz P, Pazdur R (2015) Successes and Challenges of PARP Inhibitors in Cancer Therapy. Front Oncol 5:222

    Article  PubMed  PubMed Central  Google Scholar 

  132. Rios J, Puhalla S (2011) PARP inhibitors in breast cancer: BRCA and beyond. Oncology (Williston Park) 25(11):1014–1025

    Google Scholar 

  133. Rosen EM, Pishvaian MJ (2014) Targeting the BRCA1/2 tumor suppressors. Curr Drug Targets 15(1):17–31

    Article  CAS  PubMed  Google Scholar 

  134. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P, Morandi P, Fan C, Rabiul I, Ross JS, Hortobagyi GN, Pusztai L (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685

    Article  CAS  PubMed  Google Scholar 

  135. Saal LH, Gruvberger-Saal SK, Persson C, Lovgren K, Jumppanen M, Staaf J, Jonsson G, Pires MM, Maurer M, Holm K, Koujak S, Subramaniyam S, Vallon-Christersson J, Olsson H, Su T, Memeo L, Ludwig T, Ethier SP, Krogh M, Szabolcs M, Murty VV, Isola J, Hibshoosh H, Parsons R, Borg A (2008) Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat Genet 40(1):102–107

    Article  CAS  PubMed  Google Scholar 

  136. Sabine VS, Crozier C, Brookes CL, Drake C, Piper T, van de Velde CJ, Hasenburg A, Kieback DG, Markopoulos C, Dirix L, Seynaeve C, Rea DW, Bartlett JM (2014) Mutational analysis of PI3K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study. J Clin Oncol 32(27):2951–2958

    Article  CAS  PubMed  Google Scholar 

  137. Samol J, Ranson M, Scott E, Macpherson E, Carmichael J, Thomas A, Cassidy J (2012) Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: a phase I study. Invest New Drugs 30(4):1493–1500

    Article  CAS  PubMed  Google Scholar 

  138. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  CAS  PubMed  Google Scholar 

  139. Sanchez CG, Ma CX, Crowder RJ, Guintoli T, Phommaly C, Gao F, Lin L, Ellis MJ (2011) Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer. Breast Cancer Res 13(2):R21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, Chan SK, Griffith M, Moradian A, Cheng SW, Morin GB, Watson P, Gelmon K, Chia S, Chin SF, Curtis C, Rueda OM, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra MA, Aparicio S (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486(7403):395–399

    CAS  PubMed  Google Scholar 

  141. Shen C, Oswald D, Phelps D, Cam H, Pelloski CE, Pang Q, Houghton PJ (2013) Regulation of FANCD2 by the mTOR pathway contributes to the resistance of cancer cells to DNA double-strand breaks. Cancer Res 73(11):3393–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128(1):157–170

    Article  CAS  PubMed  Google Scholar 

  143. Shen Z, Huhn S (2013) PTEN sumo-wrestles human RAD52 to mystery land. Cell Cycle 12(23):3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sueta A, Yamamoto Y, Yamamoto-Ibusuki M, Hayashi M, Takeshita T, Yamamoto S, Iwase H (2014) An integrative analysis of PIK3CA mutation, PTEN, and INPP4B expression in terms of trastuzumab efficacy in HER2-positive breast cancer. PLoS ONE 9(12):e116054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Sun Y, Ding H, Liu X, Li X, Li L (2014) INPP4B overexpression enhances the antitumor efficacy of PARP inhibitor AG014699 in MDA-MB-231 triple-negative breast cancer cells. Tumour Biol 35(5):4469–4477

    Article  CAS  PubMed  Google Scholar 

  147. Tangutoori S, Baldwin P, Sridhar S (2015) PARP inhibitors: a new era of targeted therapy. Maturitas 81(1):5–9

    Article  CAS  PubMed  Google Scholar 

  148. Telli ML, Ford JM (2010) PARP inhibitors in breast cancer. Clin Adv Hematol Oncol 8(9):629–635

    PubMed  Google Scholar 

  149. Tentori L, Graziani G (2005) Chemopotentiation by PARP inhibitors in cancer therapy. Pharmacol Res 52(1):25–33

    Article  CAS  PubMed  Google Scholar 

  150. Tokunaga E, Hisamatsu Y, Tanaka K, Yamashita N, Saeki H, Oki E, Kitao H, Maehara Y (2014) Molecular mechanisms regulating the hormone sensitivity of breast cancer. Cancer Sci 105(11):1377–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tomao F, Papa A, Zaccarelli E, Rossi L, Caruso D, Minozzi M, Vici P, Frati L, Tomao S (2015) Triple-negative breast cancer: new perspectives for targeted therapies. Onco Targets Ther 8:177–193

    Article  PubMed  PubMed Central  Google Scholar 

  152. Toss A, Cristofanilli M (2015) Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res 17:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4(10):814–819

    Article  CAS  PubMed  Google Scholar 

  154. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, Wardley A, Mitchell G, Earl H, Wickens M, Carmichael J (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376(9737):235–244

    Article  CAS  PubMed  Google Scholar 

  155. Vidula N, Rugo HS (2015) Translating the molecular message of triple-negative breast cancer into targeted therapy. Clin Cancer Res 21(7):1511–1513

    Article  CAS  PubMed  Google Scholar 

  156. Wang Z, Huang Y, Zhang J (2014) Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy. Cell Mol Biol Lett 19(2):233–242

    Article  CAS  PubMed  Google Scholar 

  157. Yamamoto-Ibusuki M, Arnedos M, Andre F (2015) Targeted therapies for ER +/HER2-metastatic breast cancer. BMC Med 13:137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Young CD, Zimmerman LJ, Hoshino D, Formisano L, Hanker AB, Gatza ML, Morrison MM, Moore PD, Whitwell CA, Dave B, Stricker T, Bhola NE, Silva GO, Patel P, Brantley-Sieders DM, Levin M, Horiates M, Palma NA, Wang K, Stephens PJ, Perou CM, Weaver AM, O’Shaughnessy JA, Chang JC, Park BH, Liebler DC, Cook RS, Arteaga CL (2015) Activating PIK3CA mutations induce an EGFR/ERK paracrine signaling axis in basal-like breast cancer. Mol Cell Proteomics 14:1959–1976

    Article  CAS  PubMed  Google Scholar 

  159. Yu KD, Zhu R, Zhan M, Rodriguez AA, Yang W, Wong S, Makris A, Lehmann BD, Chen X, Mayer I, Pietenpol JA, Shao ZM, Symmans WF, Chang JC (2013) Identification of prognosis-relevant subgroups in patients with chemoresistant triple-negative breast cancer. Clin Cancer Res 19(10):2723–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zardavas D, Fumagalli D, Loi S (2012) Phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway inhibition: a breakthrough in the management of luminal (ER+/HER2−) breast cancers? Curr Opin Oncol 24(6):623–634

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors also acknowledge Avera Cancer Institute Center for Precision Oncology, Sioux Falls, SD. The authors acknowledge the cBioPortal and STRING10. Cancer Discovery. May 2012 2; 401 (Cerami et al. [24] and Gao et al. [59]). We acknowledge the TCGA Research Network for generating TCGA datasets. We acknowledge the version 10 of STRING and authorities/institutions/organizations/Universities/resources which institutionally and financially support the STRING. The authors also acknowledge the Department of Internal Medicine, USD (Vermilion, SD). Authors acknowledge the secretarial help of Ms. Hannah Koble.

Disclosure

Authors have no declared conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandini Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

De, P., Carlson, J.H., Leyland-Jones, B., Dey, N. (2016). PI3K-AKT-mTOR Pathway Cooperates with the DNA Damage Repair Pathway: Carcinogenesis in Triple-Negative Breast Cancers and Beyond. In: Dey, N., De, P., Leyland-Jones, B. (eds) PI3K-mTOR in Cancer and Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-34211-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34211-5_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-34209-2

  • Online ISBN: 978-3-319-34211-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics