Skip to main content

Energy Saving via Integrated Passive and Active Morphing During Maneuvers

  • Chapter
  • First Online:
  • 1679 Accesses

Abstract

This paper presents some novel results found using integrated passive and active morphing during different helicopter maneuvers. A nonlinear, rigid blade helicopter model is linearized around three different maneuvering flight conditions. A specific variance constrained controller namely OVC is applied for flight control system. Parameters of autopilot and morphing parameters are simultaneously determined in order to minimize control energy while there are constraints on helicopter and control design parameters. A stochastic optimization method is used for this purpose. Closed loop system response analyses are done in order to see superiority of integrated passive and active morphing with respect to nominal helicopter and existing two morphing approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bo LY, Zhu LW, Qi S (2011) Improved LQG control for small unmanned helicopter based on active model in uncertain environment. In: International conference on electronics, communications and control (ICECC). Ningbo, China

    Google Scholar 

  • Bogdanov AA, Wan EA (2001) Model predictive neural control of a high-fidelity helicopter model. In: AIAA guidance navigation and control conference. Montreal, Canada

    Google Scholar 

  • Celi R (1991) Hingeless rotor dynamics in coordinated turns. J Am Helicopter Soc 36(4):39–47

    Article  Google Scholar 

  • Chen RTN, Jeske JA (1981) Kinematic properties of the helicopter in coordinated turns. NASA technical paper 1773, NASA

    Google Scholar 

  • Dalamagkidis K, Valavanis KP, Piegl LA (2010) Nonlinear model predictive control with neural network optimization for autonomous autorotation of small unmanned helicopters. IEEE Trans Control Syst Technol 19(4):1–14

    MATH  Google Scholar 

  • Fusato D, Celi R (2006) Multidisciplinary design optimization for helicopter aeromechanics and handling qualities. J Aircr 43(1):241–252

    Article  Google Scholar 

  • Fusato D, Guglieri G, Celi R (2001) Flight dynamics of an articulated rotor helicopter with an external slung-load. J Am Helicopter Soc 46(1):3–14

    Article  Google Scholar 

  • Gibbens PW, Megagoda EDB (2011) Efficient model predictive control algorithm for aircraft. J Guid Control Dyn 34(6):1909–1915

    Article  Google Scholar 

  • Gong H, Zhen Z, Lin X, Jiang J, Wang X (2013) Design of automatic climbing controller for large civil aircraft. J Franklin Inst 350:2442–2454

    Article  MathSciNet  MATH  Google Scholar 

  • Guglieri G, Celi R (1998) On some aspects of helicopter flight dynamics in steady turns. J Guidance Control Dyn 21(3):383–390

    Article  Google Scholar 

  • He Y, Fu MC, Marcus SI (2003) Convergence of simultaneous perturbation stochastic approximation for non-differentiable optimization. IEEE Trans Aerosp Electron Syst 48(8):1459–1463

    MathSciNet  Google Scholar 

  • Hsieh C, Skelton RE, Damra FM (1989) Minimum energy controllers with inequality constraints on output variances. Optimal Control Appl Methods 10(4):347–366

    Article  MathSciNet  MATH  Google Scholar 

  • Kung CC (2008) Nonlinear H robust control applied to F-16 aircraft with mass uncertainty using control surface inverse algorithm. J Franklin Inst 345:851–876

    Article  MathSciNet  MATH  Google Scholar 

  • Kureemun R, Walker DJ, Manimala B, Voskuijl M (2005) Helicopter flight control law design using H techniques. In: Proceedings of the 44th IEEE conference on decision and control, and the European control conference. Seville, Spain

    Google Scholar 

  • Leishman JG (2006) Principles of helicopter aerodynamics. Cambridge University Press, Cambridge, pp 263–265

    Google Scholar 

  • Luo CC, Liu RF, Yang CD, Chang YH (2003) H control design with robust flying quality. Aerosp Sci Technol 7:159–169

    Article  MATH  Google Scholar 

  • Oktay T (2012) Constrained control of complex helicopter models. Ph.D. Dissertation. Virginia Tech, Blacksburg, VA

    Google Scholar 

  • Oktay T (2014) Performance of minimum energy controllers on tiltrotor aircraft. Aircr Eng Aerosp Technol 86(5):361–374

    Article  Google Scholar 

  • Oktay T (2015) Combined output variance constrained and input variance constrained design for flight control. Proc IMechE Part G J Aerosp Eng (to appear)

    Google Scholar 

  • Oktay T, Sultan C (2012a) Variance constrained control of maneuvering helicopters. In: American helicopter society 68th annual forum. TX, USA

    Google Scholar 

  • Oktay T, Sultan C (2012b) Integrated maneuvering helicopter model and controller design. In: AIAA guidance, navigation and control conference. MN, USA

    Google Scholar 

  • Oktay T, Sultan C (2013a) Variance constrained control of maneuvering helicopters with sensor failure. Proc IMechE Part G J Aerosp Eng 227(12):1845–1858

    Google Scholar 

  • Oktay T, Sultan C (2013b) Simultaneous helicopter and control-system design. AIAA J Aircr 50(3):911–926

    Google Scholar 

  • Oktay T, Sultan C (2013c) Modeling and control of a helicopter slung-load system. Aerosp Sci Technol 29(1):206–222

    Google Scholar 

  • Oktay T, Sultan C (2013d) Robustness of variance constrained controllers for complex helicopter models. American Control Conference, WA, USA

    Google Scholar 

  • Oktay T, Sultan C (2013e) Constrained predictive control of helicopters. Aircr Eng Aerosp Technol 85(1):32–47

    Article  Google Scholar 

  • Oktay T, Sultan C (2014) Flight control energy saving via helicopter rotor active morphing. AIAA J Aircr 51(6):1784–1805

    Article  Google Scholar 

  • Padfield GD (2007) Helicopter flight dynamics. AIAA education series

    Google Scholar 

  • Park S, Bae J, Kim Y, Kim S (2013) Fault tolerant flight control system for the tilt-rotor UAV. J Franklin Inst 350:2535–2559

    Article  MathSciNet  MATH  Google Scholar 

  • Prouty RW (2005) Helicopter performance, stability and control. Robert E. Kreiger Publishing Co., Malabar, FL, pp 340–346

    Google Scholar 

  • Sadegh P, Spall JC (1998) Optimal random perturbations for multivariable stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans Autom Control 43(10):1480–1484

    Article  MathSciNet  MATH  Google Scholar 

  • Skelton RE (1987) Dynamic systems control: linear systems analysis and synthesis. Wiley (chapter 8)

    Google Scholar 

  • Skelton RE, Lorenzo MD (1985) Space structure control design by variance assignment. J Guid Control Dyn 8(4):454–462

    Article  MATH  Google Scholar 

  • Skelton RE, Sultan C (1997) Controllable tensegrity, A new class of smart structures. In: SPIE international symposium on smart structures and materials. San Diego, CA

    Google Scholar 

  • Skelton RE, Iwasaki T, Grigoriadis K (1998) A unified algebraic approach to linear control design. Taylor & Francis (chapter 40)

    Google Scholar 

  • Spall JC (1992) Multivariable stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans Autom Control 37:332–341

    Article  MathSciNet  MATH  Google Scholar 

  • Sultan C (2010) Proportional damping approximation using the energy gain and simultaneous perturbation stochastic approximation. Mech Syst Signal Process 24:2210–2224

    Article  Google Scholar 

  • Sultan C (2013) Decoupling approximation design using the peak to peak gain. Mech Syst Signal Process 36:582–603

    Article  Google Scholar 

  • Sultan C, Skelton RE (1997) Integrated design of controllable tensegrity structures. In: ASME international mechanical engineering congress and exposition. Dallas, TX

    Google Scholar 

  • Zarei J, Montazeri A, Motlagh MRJ, Poshtan J (2007) Design and comparison of LQG/LTR and H controllers for a VSTOL flight control system. J Franklin Inst 344:577–594

    Article  MATH  Google Scholar 

  • Zhu G, Skelton RE (1991) Mixed L 2 and L problems by weight selection in quadratic optimal control. Int J Quadratic Optimal Control 63(5):1161–1176

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Fund of the Erciyes University, Project Number: FBA-2013-4179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tugrul Oktay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oktay, T., Sal, F. (2016). Energy Saving via Integrated Passive and Active Morphing During Maneuvers. In: Karakoc, T., Ozerdem, M., Sogut, M., Colpan, C., Altuntas, O., Açıkkalp, E. (eds) Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-319-34181-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34181-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34179-8

  • Online ISBN: 978-3-319-34181-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics