Skip to main content

Methods for Determination of 2′-O-Me in RNA

  • Chapter
  • First Online:
Modified Nucleic Acids in Biology and Medicine

Part of the book series: RNA Technologies ((RNATECHN))

  • 1528 Accesses

Abstract

Ribose methylation is one of the most abundant RNA modifications and is found in all kingdoms of life and all major classes of RNA (rRNA, tRNA, and mRNA). Ribose methylations are introduced by stand-alone enzymes or by generic enzymes guided to the target by small RNA guides. The most abundant mechanism of ribose methylation is found in rRNA of Archaea and Eukarya where a methyltransferase (fibrillarin) use sRNA (Archaea) or box C/D snoRNA (Eukarya) as guide RNAs to specify the site of modification. The general function of these modifications is to promote ribosome biogenesis, in particular folding of the ribosomal RNA. Furthermore, some modifications affect the fidelity of translation. The function of individual modifications has in many cases remained elusive, because genetic deletion of the modification has a weak phenotype or no phenotype at all. Another problem is that methods for mapping modifications and quantitating the fraction of RNA molecules modified in a population until recently remained poorly developed. Here, we review the methods that have been used to study 2′-O-Me in RNA starting with the original approach employing in vivo isotope labeling followed by paper chromatography. The next generation of methods typically addressed one nucleotide at a time and was mostly based on primer extension. Finally, more recent mass spectrometry and high-throughput sequencing methods hold promise to reveal a new biology of this widespread type of nucleotide modification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakin A, Ofengand J (1993) Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32:9754–9762

    Article  CAS  PubMed  Google Scholar 

  • Belin S, Beghin A, Solano-Gonzalez E et al (2009) Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One 4, e7147

    Article  PubMed  PubMed Central  Google Scholar 

  • Birkedal U, Christensen-Dalsgaard M, Krogh N et al (2015) Profiling of ribose methylations in RNA by high-throughput sequencing. Angew Chem Int Ed Engl 54:451–455

    CAS  PubMed  Google Scholar 

  • Buchhaupt M, Peifer C, Entian KD (2007) Analysis of 2′-O-methylated nucleosides and pseudouridines in ribosomal RNAs using DNAzymes. Anal Biochem 361:102–108

    Article  CAS  PubMed  Google Scholar 

  • Buchhaupt M, Sharma S, Kellner S et al (2014) Partial methylation at Am100 in 18S rRNA of baker’s yeast reveals ribosome heterogeneity on the level of eukaryotic rRNA modification. PLoS One 9, e89640

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlile TM, Rojas-Duran MF, Zinshteyn B et al (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem Sci 27:344–351

    Article  CAS  PubMed  Google Scholar 

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206

    Article  CAS  PubMed  Google Scholar 

  • Filippova JA, Stepanov GA, Semenov DV et al (2015) Modified method of rRNA structure analysis reveals novel characteristics of box C/D RNA analogues. Acta Nat 7:64–73

    CAS  Google Scholar 

  • Gonzales B, Henning D, So RB et al (2005) The Treacher Collins syndrome (TCOF1) gene product is involved in pre-rRNA methylation. Hum Mol Genet 14:2035–2043

    Article  CAS  PubMed  Google Scholar 

  • Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helm M (2006) Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic Acids Res 34:721–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hengesbach M, Meusburger M, Lyko F et al (2008) Use of DNAzymes for site-specific analysis of ribonucleotide modifications. RNA 14:180–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Aleksic J, Blanco S et al (2013) Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol 14:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue H, Hayase Y, Iwai S et al (1987) Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and RNase H. FEBS Lett 215:327–330

    Article  CAS  PubMed  Google Scholar 

  • Kishore S, Gruber AR, Jedlinski DJ et al (2013) Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing. Genome Biol 14:R45

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiss-Laszlo Z, Henry Y, Bachellerie JP et al (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077–1088

    Article  CAS  PubMed  Google Scholar 

  • Klootwijk JR, Planta J (1973) Analysis of the methylation sites in yeast ribosomal RNA. Eur J Biochem 39:325–333

    Article  CAS  PubMed  Google Scholar 

  • Kos M, Tollervey D (2010) Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol Cell 37:809–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ et al (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapham J, Yu YT, Shu MD et al (1997) The position of site-directed cleavage of RNA using RNase H and 2′-O-methyl oligonucleotides is dependent on the enzyme source. RNA 3:950–951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lestrade LM, Weber J (2006) snoRNA-LBME-db a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res 34:D158–162

    Article  CAS  PubMed  Google Scholar 

  • Maden BE (1986) Identification of the locations of the methyl groups in 18 S ribosomal RNA from Xenopus laevis and man. J Mol Biol 189:681–699

    Article  CAS  PubMed  Google Scholar 

  • Maden BE (1988) Locations of methyl groups in 28 S rRNA of Xenopus laevis and man clustering in the conserved core of molecule. J Mol Biol 201:289–314

    Article  CAS  PubMed  Google Scholar 

  • Maden BE (1990) The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol 39:241–303

    Article  CAS  PubMed  Google Scholar 

  • Maden BE (2001) Mapping 2′-O-methyl groups in ribosomal RNA. Methods 25:374–382

    Article  CAS  PubMed  Google Scholar 

  • Maden BE, Corbett ME, Heeney PA et al (1995) Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA. Biochimie 77:22–29

    Article  CAS  PubMed  Google Scholar 

  • Noeske JM, Wasserman R, Terry DS et al (2015) High-resolution structure of the Escherichia coli ribosome. Nat Struct Mol Biol 22:336–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piekna-Przybylska D, Decatur WA, Fournier MJ (2007) New bioinformatic tools for analysis of nucleotide modifications in eukaryotic rRNA. RNA 13:305–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polikanov YS, Melnikov SV, Soll D et al (2015) Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nat Struct Mol Biol 22:342–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popova AM, Williamson JR (2014) Quantitative analysis of rRNA modifications using stable isotope labeling and mass spectrometry. J Am Chem Soc 136:2058–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikia M, Dai Q, Decatur WA et al (2006) A systematic ligation-based approach to study RNA modifications. RNA 12:2025–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taoka M, Nobe Y, Hori M et al (2015) A mass spectrometry-based method for comprehensive quantitative determination of post-transcriptional RNA modifications: the complete chemical structure of Schizosaccharomyces pombe ribosomal RNAs. Nucleic Acids Res

    Google Scholar 

  • Watkins NJ, Bohnsack MT (2012) The box C/D and H/ACA snoRNPs: key players in the modification processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA 3:397–414

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Sharma S, Kotter P et al (2015) Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae. Nucleic Acids Res 43:2342–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu YT, Shu MD, Steitz JA (1997) A new method for detecting sites of 2′-O-methylation in RNA molecules. RNA 3:324–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XY, Yu T (2004) Detection and quantitation of RNA base modifications. RNA 10:996–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Martin Jansson for critical reading of the manuscript. The work was supported by the Danish Research Council for Independent Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Birkedal, U., Krogh, N., Andersen, K.L., Nielsen, H. (2016). Methods for Determination of 2′-O-Me in RNA. In: Jurga, S., Erdmann (Deceased), V., Barciszewski, J. (eds) Modified Nucleic Acids in Biology and Medicine. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-34175-0_8

Download citation

Publish with us

Policies and ethics