Skip to main content

Polymerase Reactions that Involve Modified Nucleotides

  • Chapter
  • First Online:

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Polymerases are known to catalyze the synthesis of long DNA/RNA chains and play important roles in replication and translation in biological systems. Because their enzymatic activities are versatile, they have been widely employed for medical diagnoses and criminal investigations and also as research tools in biological studies. To date, various polymerases have been genetically engineered and are commercially available for selected applications that involve various chemically modified nucleoside triphosphate analogs. For example, dye-terminator sequencing, which made a great contribution to sequence determination in the human genome project, uses four kinds of 2′,3′-dideoxynucleoside-5′-triphosphate analogs that contain a fluorophore attached to the base moiety. Concomitantly, polymerase variants that can efficiently accept those analogs as substrates were developed. Various triphosphate analogs modified at their base/sugar/phosphate moieties have been designed and synthesized for the development of nucleic acid aptamers as therapeutic drugs, diagnostic agents, and molecular indicators. Because nucleoside analogs include xenonucleic acids (XNAs), which have unique sugar backbones, drastic modifications in polymerase engineering are being boldly pursued. In this chapter, we are focusing on polymerase reactions that involve chemically modified substrates and their applications to innovative life sciences and technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler S, Modrich P (1979) T7-induced DNA polymerase. Characterization of associated exonuclease activities and resolution into biologically active subunits. J Biol Chem 254:11605–11614

    CAS  PubMed  Google Scholar 

  • Alexandrova LA, Skoblov AY, Jasko MV et al (1998) 2′-Deoxynucleoside 5′-triphosphates modified at alpha-, beta- and gamma-phosphates as substrates for DNA polymerases. Nucleic Acids Res 26:778–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves Ferreira-Bravo I, Cozens C, Holliger P et al (2015) Selection of 2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity. Nucleic Acids Res 43:9587–9599

    PubMed  PubMed Central  Google Scholar 

  • Battersby TR, Ang DN, Burgstaller P et al (1999) Quantitative analysis of receptors for adenosine nucleotides obtained via in vitro selection from a library incorporating a cationic nucleotide analog. J Am Chem Soc 121:9781–9789

    Article  CAS  PubMed  Google Scholar 

  • Bebenek K, Joyce CM, Fitzgerald MP et al (1990) The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I. J Biol Chem 265:13878–13887

    CAS  PubMed  Google Scholar 

  • Blanco L, Bernad A, Lázaro JM et al (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264:8935–8940

    CAS  PubMed  Google Scholar 

  • Boschi-Muller S, Motorin Y (2013) Chemistry enters nucleic acids biology: enzymatic mechanisms of RNA modification. Biochemistry (Mosc) 78:1392–1404

    Article  CAS  Google Scholar 

  • Burmeister PE, Lewis SD, Silva RF et al (2005) Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol 12:25–33

    Article  CAS  PubMed  Google Scholar 

  • Buβkamp H, Batroff E, Niederwieser A et al (2014) Efficient labelling of enzymatically synthesized vinyl-modified DNA by an inverse-electron-demand Diels-Alder reaction. Chem Commun (Camb) 50:10827–10829

    Article  CAS  Google Scholar 

  • Campbell JL, Richardson CC, Studier FW (1978) Genetic recombination and complementation between bacteriophage T7 and cloned fragments of T7 DNA. Proc Natl Acad Sci USA 75:2276–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco N, Huang Z (2004) Enzymatic synthesis of phosphoroselenoate DNA using thymidine 5′-(alpha-P-seleno)triphosphate and DNA polymerase for X-ray crystallography via MAD. J Am Chem Soc 126:448–449

    Article  CAS  PubMed  Google Scholar 

  • Chaput JC, Szostak JW (2003) TNA synthesis by DNA polymerases. J Am Chem Soc 125:9274–9275

    Article  CAS  PubMed  Google Scholar 

  • Chelliserrykattil J, Lu H, Lee AH et al (2008) Polymerase amplification, cloning, and gene expression of benzo-homologous “yDNA” base pairs. Chembiochem 9:2976–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davanloo P, Rosenberg AH, Dunn JJ et al (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 81:2035–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Clercq E (2001) Antiviral drugs: current state of the art. J Clin Virol 22:73–89

    Article  PubMed  Google Scholar 

  • Dziuba D, Pohl R, Hocek M (2015) Polymerase synthesis of DNA labelled with benzylidene cyanoacetamide-based fluorescent molecular rotors: fluorescent light-up probes for DNA-binding proteins. Chem Commun 51:4880–4882

    Article  CAS  Google Scholar 

  • Eckstein F, Armstrong VW, Sternbach H (1976) Stereochemistry of polymerization by DNA-dependent RNA-polymerase from Escherichia coli: an investigation with a diastereomeric ATP-analogue. Proc Natl Acad Sci USA 73:2987–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61

    Article  CAS  Google Scholar 

  • Fujita H, Nakajima K, Kasahara Y et al (2015) Polymerase-mediated high-density incorporation of amphiphilic functionalities into DNA: enhancement of nuclease resistance and stability in human serum. Bioorg Med Chem Lett 25:333–336

    Article  CAS  PubMed  Google Scholar 

  • Gardner AF, Wang J, Wu W et al (2012) Rapid incorporation kinetics and improved fidelity of a novel class of 3′-OH unblocked reversible terminators. Nucleic Acids Res 40:7404–7415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gharizadeh B, Eriksson J, Nourizad N et al (2004) Improvements in pyrosequencing technology by employing sequenase polymerase. Anal Biochem 330:272–280

    Article  CAS  PubMed  Google Scholar 

  • Gierlich J, Gutsmiedl K, Gramlich PM et al (2007) Synthesis of highly modified DNA by a combination of PCR with alkyne-bearing triphosphates and click chemistry. Chemistry 13:9486–9494

    Article  CAS  PubMed  Google Scholar 

  • Gold L, Ayers D, Bertino J et al (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5:e15004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gourlain T, Sidorov A, Mignet N et al (2001) Enhancing the catalytic repertoire of nucleic acids. II. Simultaneous incorporation of amino and imidazolyl functionalities by two modified triphosphates during PCR. Nucleic Acids Res 29:1898–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grippo P, Richardson CC (1971) Deoxyribonucleic acid polymerase of bacteriophage T7. J Biol Chem 246:6867–6873

    CAS  PubMed  Google Scholar 

  • He K, Porter KW, Hasan A et al (1999) Synthesis of 5-substituted 2′-deoxycytidine 5′-(alpha-P-borano)triphosphates, their incorporation into DNA and effects on exonuclease. Nucleic Acids Res 27:1788–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Held HA, Benner SA (2002) Challenging artificial genetic systems: thymidine analogs with 5-position sulfur functionality. Nucleic Acids Res 30:3857–3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirao I, Ohtsuki T, Fujiwara T et al (2002) An unnatural base pair for incorporating amino acid analogs into proteins. Nat Biotechnol 20:177–182

    Article  CAS  PubMed  Google Scholar 

  • Hirao I, Harada Y, Kimoto M et al (2004) A two-unnatural-base-pair system toward the expansion of the genetic code. J Am Chem Soc 126:13298–13305

    Article  CAS  PubMed  Google Scholar 

  • Hirao I, Kimoto M, Mitsui T et al (2006) An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA. Nat Methods 3:729–735

    Article  CAS  PubMed  Google Scholar 

  • Hollenstein M, Hipolito CJ, Lam CH et al (2009) A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M2+). Nucleic Acids Res 37:1638–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichida JK, Horhota A, Zou K et al (2005) High fidelity TNA synthesis by Therminator polymerase. Nucleic Acids Res 33:5219–5225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imaizumi Y, Kasahara Y, Fujita H et al (2013) Efficacy of base-modification on target binding of small molecule DNA aptamers. J Am Chem Soc 135:9412–9419

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Hirao I, Yokoyama S (2000) Synthesis of 3-(2-deoxy-β-d-ribofuranosyl)pyridin-2-one and 2-amino-6-(N, N-dimethylamino)-9-(2-deoxy-β-d-ribofuranosyl)purine derivatives for an unnatural base pair. Tetrahedron Lett 41:3931–3934

    Article  CAS  Google Scholar 

  • Jäger S, Rasched G, Kornreich-Leshem H et al (2005) A versatile toolbox for variable DNA functionalization at high density. J Am Chem Soc 127:15071–15082

    Article  PubMed  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO, Molyneaux SJ et al (1992) Comparative physiological studies on hyperthermophilic archaea isolated from deep-sea hot vents with emphasis on Pyrococcus strain GB-D. Appl Environ Microbiol 58:3472–3481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen KB, Atkinson BL, Willis MC et al (1995) Using in vitro selection to direct the covalent attachment of human immunodeficiency virus type 1 Rev protein to high-affinity RNA ligands. Proc Natl Acad Sci USA 92:12220–12224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jhaveri S, Olwin B, Ellington AD (1998) In vitro selection of phosphorothiolated aptamers. Bioorg Med Chem Lett 8:2285–2290

    Article  CAS  PubMed  Google Scholar 

  • Kajiyama T, Kuwahara M, Goto M et al (2011) Optimization of pyrosequencing reads by superior successive incorporation efficiency of improved 2′-deoxyadenosine-5′-triphosphate analogs. Anal Biochem 416:8–17

    Article  CAS  PubMed  Google Scholar 

  • Kasahara Y, Irisawa Y, Ozaki H et al (2013) 2′,4′-BNA/LNA aptamers: CE-SELEX using a DNA-based library of full-length 2′-O,4′-C-methylene-bridged/linked bicyclic ribonucleotides. Bioorg Med Chem Lett 23:1288–1292

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Minakawa N, Komatsu Y et al (2005) New NTP analogs: the synthesis of 4′-thioUTP and 4′-thioCTP and their utility for SELEX. Nucleic Acids Res 33:2942–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempeneers V, Renders M, Froeyen M et al (2005) Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization. Nucleic Acids Res 33:3828–3836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiefer JR, Mao C, Braman JC et al (1998) Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391:304–307

    Article  CAS  PubMed  Google Scholar 

  • Kimoto M, Kawai R, Mitsui T et al (2009) An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res 37:e14

    Article  PubMed  CAS  Google Scholar 

  • Kimoto M, Yamashige R, Matsunaga K et al (2013) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31:453–457

    Article  CAS  PubMed  Google Scholar 

  • Klenow H, Henningsen I (1970) Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proc Natl Acad Sci USA 65:168–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima T, Furukawa K, Maruyama H et al (2013) PCR amplification of 4′-thioDNA using 2′-deoxy-4′-thionucleoside 5′-triphosphates. ACS Synth Biol 2:529–536

    Article  CAS  PubMed  Google Scholar 

  • Kong H, Kucera RB, Jack WE (1993) Characterization of a DNA polymerase from the hyperthermophile archaea Thermococcus litoralis. Vent DNA polymerase, steady state kinetics, thermal stability, processivity, strand displacement, and exonuclease activities. J Biol Chem 268:1965–1975

    CAS  PubMed  Google Scholar 

  • Kotani H, Ishizaki Y, Hiraoka N et al (1987) Nucleotide sequence and expression of the cloned gene of bacteriophage SP6 RNA polymerase. Nucleic Acids Res 15:2653–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kufe DW, Major PP, Egan EM et al (1980) Correlation of cytotoxicity with incorporation of ara-C into DNA. J Biol Chem 255:8997–9000

    CAS  PubMed  Google Scholar 

  • Kuwahara M, Nagashima J, Hasegawa M et al (2006) Systematic characterization of 2′-deoxynucleoside- 5′-triphosphate analogs as substrates for DNA polymerases by polymerase chain reaction and kinetic studies on enzymatic production of modified DNA. Nucleic Acids Res 34:5383–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwahara M, Obika S, Nagashima J et al (2008) Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2′,4′-bridged nucleosides. Nucleic Acids Res 36:4257–4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latham JA, Johnson R, Toole JJ (1994) The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2′-deoxyuridine. Nucleic Acids Res 22:2817–2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawyer FC, Stoffel S, Saiki RK et al (1989) Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem 264:6427–6437

    CAS  PubMed  Google Scholar 

  • Leconte AM, Hwang GT, Matsuda S et al (2008) Discovery, characterization, and optimization of an unnatural base pair for expansion of the genetic alphabet. J Am Chem Soc 130:2336–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AH, Kool ET (2005) A new four-base genetic helix, yDNA, composed of widened benzopyrimidine-purine pairs. J Am Chem Soc 127:3332–3338

    Article  CAS  PubMed  Google Scholar 

  • Lee SE, Sidorov A, Gourlain T et al (2001) Enhancing the catalytic repertoire of nucleic acids: a systematic study of linker length and rigidity. Nucleic Acids Res 29:1565–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Porter K, Huang F et al (1995) Boron-containing oligodeoxyribonucleotide 14mer duplexes: enzymatic synthesis and melting studies. Nucleic Acids Res 23:4495–4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limbach PA, Crain PF, McCloskey JA (1994) Summary: the modified nucleosides of RNA. Nucleic Acids Res 22:2183–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Qiu Q, Gill SC et al (1994) Modified RNA sequence pools for in vitro selection. Nucleic Acids Res 22:5229–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumder HK, Maitra U, Rosenberg M (1979) Termination of transcription by bacteriophage T3 RNA polymerase: homogeneous 3′-terminal oligonucleotide sequence of in vitro T3 RNA polymerase transcripts. Proc Natl Acad Sci USA 76:5110–5113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malyshev DA, Seo YJ, Ordoukhanian P et al (2009) PCR with an expanded genetic alphabet. J Am Chem Soc 131:14620–14621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malyshev DA, Dhami K, Lavergne T et al (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature 509:385–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matray TJ, Kool ET (1999) A specific partner for abasic damage in DNA. Nature 399:704–708

    Article  CAS  PubMed  Google Scholar 

  • Mattila P, Korpela J, Tenkanen T et al (1991) Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase–an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res 19:4967–4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzura H, Eckstein F (1968) A polyribonucleotide containing alternation P=O and P=S linkages. Eur J Biochem 3:448–452

    Article  CAS  PubMed  Google Scholar 

  • McMinn DL, Ogawa AK, Wu Y et al (1999) Efforts toward expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self-pairing hydrophobic base. J Am Chem Soc 121:11585–11586

    Article  CAS  Google Scholar 

  • Mehedi Masud M, Ozaki-Nakamura A, Kuwahara M et al (2003) Modified DNA bearing 5(methoxycarbonylmethyl)-2′-deoxyuridine: preparation by PCR with thermophilic DNA polymerase and postsynthetic derivatization. Chembiochem 4:584–588

    Article  PubMed  CAS  Google Scholar 

  • Minakawa N, Sanji M, Kato Y et al (2008) Investigations toward the selection of fully-modified 4′-thioRNA aptamers: optimization of in vitro transcription steps in the presence of 4′-thioNTPs. Bioorg Med Chem 16:9450–9456

    Article  CAS  PubMed  Google Scholar 

  • Miroshnichenko ML, Gongadze GM, Rainey FA et al (1998) Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol 48(Pt 1):23–29

    Google Scholar 

  • Morales JC, Kool ET (1998) Efficient replication between non-hydrogen-bonded nucleoside shape analogs. Nat Struct Biol 5:950–954

    Article  CAS  PubMed  Google Scholar 

  • Nakamaye KL, Gish G, Eckstein F et al (1988) Direct sequencing of polymerase chain reaction amplified DNA fragments through the incorporation of deoxynucleoside alpha-thiotriphosphates. Nucleic Acids Res 16:9947–9959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka M, Mizuguchi H, Fujiwara S et al (2001) Long and accurate PCR with a mixture of KOD DNA polymerase and its exonuclease deficient mutant enzyme. J Biotechnol 88:141–149

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki T, Kimoto M, Ishikawa M et al (2001) Unnatural base pairs for specific transcription. Proc Natl Acad Sci USA 98:4922–4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono T, Scalf M, Smith LM (1997) 2′-Fluoro modified nucleic acids: polymerase-directed synthesis, properties and stability to analysis by matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Res 25:4581–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padilla R, Sousa R (1999) Efficient synthesis of nucleic acids heavily modified with non-canonical ribose 2′-groups using a mutant T7 RNA polymerase (RNAP). Nucleic Acids Res 27:1561–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padilla R, Sousa R (2002) A Y639F/H784A T7 RNA polymerase double mutant displays superior properties for synthesizing RNAs with non-canonical NTPs. Nucleic Acids Res 30:e138

    Article  PubMed  PubMed Central  Google Scholar 

  • Patolsky F, Weizmann Y, Willner I (2002) Redox-active nucleic-acid replica for the amplified bioelectrocatalytic detection of viral DNA. J Am Chem Soc 124:770–772

    Article  CAS  PubMed  Google Scholar 

  • Perrin DM, Garestier T, Hélène C (1999) Expanding the catalytic repertoire of nucleic acid catalysts: simultaneous incorporation of two modified deoxyribonucleoside triphosphates bearing ammonium and imidazolyl functionalities. Nucleosides Nucleotides 18:377–391

    Article  CAS  PubMed  Google Scholar 

  • Perrin DM, Garestier T, Hélène C (2001) Bridging the gap between proteins and nucleic acids: a metal-independent RNAseA mimic with two protein-like functionalities. J Am Chem Soc 123:1556–1563

    Article  CAS  PubMed  Google Scholar 

  • Piccirilli JA, Krauch T, Moroney SE et al (1990) Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343:33–37

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro VB, Taylor AI, Cozens C et al (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336:341–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raindlová V, Pohl R, Sanda M et al (2010) Direct polymerase synthesis of reactive aldehyde-functionalized DNA and its conjugation and staining with hydrazines. Angew Chem Int Ed Engl 49:1064–1066

    Article  PubMed  CAS  Google Scholar 

  • Renders M, Emmerechts G, Rozenski J et al (2007) Enzymatic synthesis of phosphonomethyl oligonucleotides by therminator polymerase. Angew Chem Int Ed Engl 46:2501–2504

    Article  CAS  PubMed  Google Scholar 

  • Ried T, Baldini A, Rand TC et al (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc Natl Acad Sci USA 89:1388–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedl J, Ménová P, Pohl R et al (2012) GFP-like fluorophores as DNA labels for studying DNA–protein interactions. J Org Chem 77:8287–8293

    Article  CAS  PubMed  Google Scholar 

  • Ronaghi M, Karamohamed S, Pettersson B et al (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89

    Article  CAS  PubMed  Google Scholar 

  • Ruckman J, Green LS, Beeson J et al (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273:20556–20567

    Article  CAS  PubMed  Google Scholar 

  • Rüdiger A, Jorgensen PL, Antranikian G (1995) Isolation and characterization of a heat-stable pullulanase from the hyperthermophilic archaeon Pyrococcus woesei after cloning and expression of its gene in Escherichia coli. Appl Environ Microbiol 61:567–575

    PubMed  PubMed Central  Google Scholar 

  • Rüttimann C, Cotoras M, Zaldivar J et al (1985) DNA polymerases from the extremely thermophilic bacterium Thermus thermophilus HB-8. Eur J Biochem 149:41–46

    Article  PubMed  Google Scholar 

  • Sakthivel K, Barbas CF III (1998) Expanding the potential of DNA for binding and catalysis: highly functionalized dUTP derivatives that are substrates for thermostable DNA polymerases. Angew Chem Int Ed 37:2872–2875

    Article  CAS  Google Scholar 

  • Sawai H, Ozaki AN, Satoh F et al (2001) Expansion of structural and functional diversities of DNA using new 5-substituted deoxyuridine derivatives by PCR with superthermophilic KOD Dash DNA polymerase. Chem Commun 2604–2605

    Google Scholar 

  • Seo YJ, Hwang GT, Ordoukhanian P et al (2009) Optimization of an unnatural base pair toward natural-like replication. J Am Chem Soc 131:3246–3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoji A, Kuwahara M, Ozaki H et al (2007) Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity. J Am Chem Soc 129:1456–1464

    Article  CAS  PubMed  Google Scholar 

  • Sidorov AV, Grasby JA, Williams DM (2004) Sequence-specific cleavage of RNA in the absence of divalent metal ions by a DNAzyme incorporating imidazolyl and amino functionalities. Nucleic Acids Res 32:1591–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sismour AM, Benner SA (2005) The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nucleic Acids Res 33:5640–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Southworth MW, Kong H, Kucera RB et al (1996) Cloning of thermostable DNA polymerases from hyperthermophilic marine Archaea with emphasis on Thermococcus sp. 9 degrees N-7 and mutations affecting 3′-5′ exonuclease activity. Proc Natl Acad Sci USA 93:5281–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Switzer C, Moroney SE, Benner SA (1989) Enzymatic incorporation of a new base pair into DNA and RNA. J Am Chem Soc 111:8322–8323

    Article  CAS  Google Scholar 

  • Takagi M, Nishioka M, Kakihara H et al (1997) Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ Microbiol 63:4504–4510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarashima N, Sumitomo T, Ando H et al (2015) Synthesis of DNA fragments containing 2′-deoxy-4′-selenonucleoside units using DNA polymerases: comparison of dNTPs with O, S and Se at the 4′-position in replication. Org Biomol Chem 13:6949–6952

    Article  CAS  PubMed  Google Scholar 

  • Tasara T, Angerer B, Damond M et al (2003) Incorporation of reporter molecule-labeled nucleotides by DNA polymerases. II. High-density labeling of natural DNA. Nucleic Acids Res 31:2636–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  • Vaish NK, Fraley AW, Szostak JW et al (2000) Expanding the structural and functional diversity of RNA: analog uridine triphosphates as candidates for in vitro selection of nucleic acids. Nucleic Acids Res 28:3316–3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaish NK, Larralde R, Fraley AW et al (2003) A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality. Biochemistry 42:8842–8851

    Article  CAS  PubMed  Google Scholar 

  • Vastmans K, Pochet S, Peys A et al (2000) Enzymatic incorporation in DNA of 1,5-anhydrohexitol nucleotides. Biochemistry 39:12757–12765

    Article  CAS  PubMed  Google Scholar 

  • Veedu RN, Vester B, Wengel J (2007) Enzymatic incorporation of LNA nucleotides into DNA strands. Chembiochem 8:490–492

    Article  CAS  PubMed  Google Scholar 

  • Weisbrod SH, Marx A (2007) A nucleoside triphosphate for site-specific labelling of DNA by the Staudinger ligation. Chem Commun (Camb) 1828–1830

    Google Scholar 

  • Wolfe JL, Kawate T, Belenky A et al (2002) Synthesis and polymerase incorporation of 5′-amino-2′,5′-dideoxy-5′-N-triphosphate nucleotides. Nucleic Acids Res 30:3739–3747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Hutter D, Sheng P et al (2006) Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. Nucleic Acids Res 34:6095–6101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Sismour AM, Sheng P et al (2007) Enzymatic incorporation of a third nucleobase pair. Nucleic Acids Res 35:4238–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Zhang S, Chaput JC (2012) Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat Chem 4:183–187

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yang Z, Sefah K et al (2015) Evolution of functional six-nucleotide DNA. J Am Chem Soc 137:6734–6737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Hiroaki Sawai, Professor Emeritus of Gunma University, for his contribution to developing the research field and for the financial support by a Grant for Adaptable and Seamless Technology Transfer Program through Target-driven R & D, No. AS2525029M from Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayasu Kuwahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuwahara, M., Hagiwara, K., Ozaki, H. (2016). Polymerase Reactions that Involve Modified Nucleotides. In: Jurga, S., Erdmann (Deceased), V., Barciszewski, J. (eds) Modified Nucleic Acids in Biology and Medicine. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-34175-0_18

Download citation

Publish with us

Policies and ethics