Skip to main content

Effect of Depurination on Cellular and Viral RNA

  • Chapter
  • First Online:
Modified Nucleic Acids in Biology and Medicine

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Abasic sites in DNA arise from spontaneous damage and, if left unrepaired, contribute to mutations. Dedicated pathways have evolved to repair abasic DNA; however, the biological implications and cellular fate of RNA possessing these lesions are not well characterized. In this chapter, we review advances in the area of RNA depurination, which produces the dominant form of abasic RNA in vivo. We discuss the biochemistry of RNA depurination, the varied impacts of cellular and viral RNA depurination, and the numerous methods available for detecting abasic RNA. Given the abundance of RNA in cells and the relative stability of abasic RNA compared with DNA, depurinated RNA likely has physiological significance. Recent work suggests a link between RNA depurination and some age-related diseases as well as downstream signalling pathways that induce apoptosis. In addition, pathogens with RNA genomes are influenced by depurination. For example, abasic sites of HIV-1 RNA may contribute to adaptation by mutation and recombination. Therefore, effects of RNA depurination have medical relevance that warrants continued study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlquist P (1992) Bromovirus RNA replication and transcription. Curr Opin Genet Dev 2:71–76

    Article  CAS  PubMed  Google Scholar 

  • Allen T, Henschel EV, Coons T et al (1989) Purification and characterization of the adenine phosphoribosyltransferase and hypoxanthine-guanine phosphoribosyltransferase activities from Leishmania donovani. Mol Biochem Parasitol 33:273–281

    Article  CAS  PubMed  Google Scholar 

  • An R, Jia Y, Wan B et al (2014) Non-enzymatic depurination of nucleic acids: factors and mechanisms. PLoS One 9, e115950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bailly V, Verly WG (1988a) Importance of thiols in the repair mechanisms of DNA containing AP (apurinic or apyrimidinic) sites. Nucleic Acids Res 16:9489–9496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailly V, Derydt M, Verly WG (1989) Delta-elimination in the repair of AP (apurinic/apyrimidinic) sites in DNA. Biochem J 261:707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailly V, Verly WG (1988b) Possible roles of beta-elimination and delta-elimination reactions in the repair of DNA containing AP (apurinic/apyrimidinic) sites in mammalian cells. Biochem J 253:553–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrio JR, Secrist JA, Leonard NJ (1972) Fluorescent adenosine and cytidine derivatives. Biochem Biophys Res Commun 46:597–604

    Article  CAS  PubMed  Google Scholar 

  • Basu VP, Song M, Gao L et al (2008) Strand transfer events during HIV-1 reverse transcription. Virus Res 134:19–38

    Article  CAS  PubMed  Google Scholar 

  • Bevilacqua VLH, Nilles JM, Rice JS et al (2010) Ricin activity assay by direct analysis in real time mass spectrometry: detection of adenine release. Anal Chem 82:798–800

    Article  CAS  PubMed  Google Scholar 

  • Brigotti M, Alfieri R, Sestili P et al (2002) Damage to nuclear DNA induced by Shiga toxin 1 and ricin in human endothelial cells. FASEB J 16:365–372

    Article  CAS  PubMed  Google Scholar 

  • Brookes P, Lawley P (1961) The reaction of mono- and di functional alkylating agents with nucleic acids. Biochem J 80:496–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browning KS, Humphreys J, Hobbs W et al (1990) Determination of the amounts of the protein synthesis initiation and elongation factors in wheat germ. J Biol Chem 265:17967–17973

    CAS  PubMed  Google Scholar 

  • Burton K, Petersen GB (1960) The frequencies of certain sequences of nucleotides in deoxyribonucleic acid. Biochem J 75:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabretta A, Kupfer PA, Leumann CJ (2015) The effect of RNA base lesions on mRNA translation. Nucleic Acids Res 43:4713–4720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XY, Berti PJ, Schramm VL (2000) Transition-state analysis for depurination of DNA by ricin A-chain. J Am Chem Soc 122:6527–6534

    Article  CAS  Google Scholar 

  • Chen XY, Link TM, Schramm VL (1998) Ricin A-chain: kinetics, mechanism, and RNA stem-loop inhibitors. Biochemistry 37:11605–11613

    Article  CAS  PubMed  Google Scholar 

  • Cody RB, Laramée JA, Nilles JM et al (2005) Direct analysis in real time (DART) mass spectrometry. JEOL News 40:8–12

    Google Scholar 

  • Colpoys WE, Cochran BH, Carducci TM et al (2005) Shiga toxins activate translational regulation pathways in intestinal epithelial cells. Cell Signal 17:891–899

    Article  CAS  PubMed  Google Scholar 

  • Doma MK, Parker R (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440:561–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drabløs F, Feyzi E, Aas PA et al (2004) Alkylation damage in DNA and RNA: repair mechanisms and medical significance. DNA Repair (Amst) 3:1389–1407

    Article  CAS  Google Scholar 

  • Endo Y, Mitsui K, Motizuki M et al (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. J Biol Chem 262:5908–5912

    CAS  PubMed  Google Scholar 

  • Endo Y, Tsurugi K (1987) RNA N-glycosidase activity of ricin A chain. J Biol Chem 262:8128–8130

    CAS  PubMed  Google Scholar 

  • Endo Y, Tsurugi K (1988) The RNA N-glycosidase activity of ricin A-chain. Nucleic Acids Symp Ser 263:139–142

    Google Scholar 

  • Endo Y, Tsurugi K (1986) Mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. Nucleic Acids Symp Ser 262:187–190

    Google Scholar 

  • Fabris D (2000) Steady-state kinetics of ricin A-chain reaction with the sarcin: ricin Loop and with HIV-1 Ψ-RNA hairpins evaluated by direct infusion electrospray ionization mass spectrometry. J Am Chem Soc 122:8779–8780

    Article  CAS  Google Scholar 

  • Gandhi R, Manzoor M, Hudak KA (2008) Depurination of brome mosaic virus RNA3 in vivo results in translation-dependent accelerated degradation of the viral RNA. J Biol Chem 283:32218–32228

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Balakrishnan M, Roques BP et al (2006) Insights into the multiple roles of pausing in HIV-1 reverse transcriptase-promoted strand transfers. J Biol Chem 282:6222–6231

    Article  CAS  Google Scholar 

  • Garcia MA, Gil J, Ventoso I et al (2006) Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70:1032–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gates KS (2010) An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol 22:1747–1760

    Article  CAS  Google Scholar 

  • Gessner SL, Irvin JD (1980) Inhibition of elongation factor 2-dependent translocation by the pokeweed antiviral protein and ricin. J Biol Chem 255:3251–3253

    CAS  PubMed  Google Scholar 

  • Gray JS, Bae HK, Li JCB et al (2008) Double-stranded RNA-activated protein kinase mediates induction of interleukin-8 expression by deoxynivalenol, shiga toxin 1, and ricin in monocytes. Toxicol Sci 105:322–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heisler I, Keller J, Tauber R et al (2002) A colorimetric assay for the quantitation of free adenine applied to determine the enzymatic activity of ribosome-inactivating proteins. Anal Biochem 302:114–122

    Article  CAS  PubMed  Google Scholar 

  • Hevesi L, Wolfson-Davidson E, Nagy JB et al (1972) Contribution to the mechanism of the acid-catalyzed hydrolysis of purine nucleosides. J Am Chem Soc 94:4715–4720

    Article  CAS  PubMed  Google Scholar 

  • Hines HB, Brueggemann EE, Hale ML (2004) High-performance liquid chromatography-mass selective detection assay for adenine released from a synthetic RNA substrate by ricin A chain. Anal Biochem 330:119–122

    Article  CAS  PubMed  Google Scholar 

  • Holmberg L, Melander Y, Nygård O (1994) Probing the structure of mouse Ehrlich ascites cell 5.8S, 18S and 28S ribosomal RNA in situ. Nucleic Acids Res 22:1374–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horrix C, Raviv Z, Flescher E et al (2011) Plant ribosome-inactivating proteins type II induce the unfolded protein response in human cancer cells. Cell Mol Life Sci 68:1269–1281

    Article  CAS  PubMed  Google Scholar 

  • Hoskins J, Scott Butler J (2008) RNA-based 5-fluorouracil toxicity requires the pseudouridylation activity of Cbf5p. Genetics 179:323–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias R (2005) Molecular characterization and systemic induction of single-chain ribosome-inactivating proteins (RIPs) in sugar beet (Beta vulgaris) leaves. J Exp Bot 56:1675–1684

    Article  CAS  PubMed  Google Scholar 

  • Iglesias R, Perez Y, Citores L et al (2008) Elicitor-dependent expression of the ribosome-inactivating protein beetin is developmentally regulated. J Exp Bot 59:1215–1223

    Article  CAS  PubMed  Google Scholar 

  • Inada T (2013) Quality control systems for aberrant mRNAs induced by aberrant translation elongation and termination. Biochim Biophys Acta 1829:634–642

    Article  CAS  PubMed  Google Scholar 

  • Iordanov MS, Pribnow D, Magun JL et al (1997) Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol Cell Biol 17:3373–3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irvin JD, Kelly T, Robertus JD (1980) Purification and properties of a second antiviral protein from Phytolacca Americana which inactivates eukaryotic ribosomes. Arch Biochem Biophys 200:418–425

    Article  CAS  PubMed  Google Scholar 

  • Jandhyala DM, Thorpe CM, Magun B (2012) Ricin and shiga toxins: effects on host cell signal transduction. Curr Top Microbiol Immunol 357:41–65

    CAS  PubMed  Google Scholar 

  • Jobert L, Nilsen H (2014) Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes. Cell Mol Life Sci 71:2451–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jobert L, Skjeldam HK, Dalhus B et al (2013) The human base excision repair enzyme SMUG1 directly interacts with DKC1 and contributes to RNA quality control. Mol Cell 49:339–345

    Article  CAS  PubMed  Google Scholar 

  • Kang R, Tang D (2012) PKR-dependent inflammatory signals. Sci Signal 5:pe47

    Article  PubMed  PubMed Central  Google Scholar 

  • Kao CC, Sivakumaran K (2000) Brome mosaic virus, good for an RNA virologist’s basic needs. Mol Plant Pathol 1:91–97

    Article  CAS  PubMed  Google Scholar 

  • Karran RA, Hudak KA (2008) Depurination within the intergenic region of Brome mosaic virus RNA3 inhibits viral replication in vitro and in vivo. Nucleic Acids Res 36:7230–7239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karran RA, Hudak KA (2011) Depurination of Brome mosaic virus RNA3 inhibits its packaging into virus particles. Nucleic Acids Res 39:7209–7222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y-J, Wilson DM III (2011) Overview of base excision repair biochemistry. Curr Mol Pharmacol 5:3–13

    Article  Google Scholar 

  • Kirk SR, Tor Y (1999) tRNA(Phe) binds aminoglycoside antibiotics. Bioorg Med Chem 7:1979–1991

    Article  CAS  PubMed  Google Scholar 

  • Kochetkov N, Budovskii E (1972) Hydrolysis of N-glycosidic bonds in nucleosides, nucleotides, and their derivatives. In: Organic chemistry of nucleic acids part B. Plenum Press, New York, pp 425–448

    Chapter  Google Scholar 

  • Kong Q, Lin CLG (2010) Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol Life Sci 67:1817–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzyzosiak WJ, Marciniec T, Wiewiorowski M et al (1988) Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Biochemistry 27:5771–5777

    Article  CAS  PubMed  Google Scholar 

  • Küpfer PA, Crey-Desbiolles C, Leumann CJ (2007) Trans-lesion synthesis and RNaseH activity by reverse transcriptases on a true abasic RNA template. Nucleic Acids Res 35:6846–6853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Küpfer PA, Leumann CJ (2007) The chemical stability of abasic RNA compared to abasic DNA. Nucleic Acids Res 35:58–68

    Article  PubMed  CAS  Google Scholar 

  • Lhomme J, Constant JF, Demeunynck M (1999) Abasic DNA structure, reactivity, and recognition. Biopolymers 52:65–83

    Article  CAS  PubMed  Google Scholar 

  • Li J, Xia X, Ke Y et al (2007) Trichosanthin induced apoptosis in HL-60 cells via mitochondrial and endoplasmic reticulum stress signaling pathways. Biochim Biophys Acta 1770:1169–1180

    Article  CAS  PubMed  Google Scholar 

  • Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11:3610–3618

    Article  CAS  PubMed  Google Scholar 

  • Lovell MA, Markesbery WR (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res 35:7497–7504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoharan M, Mazumder A, Wilde JA et al (1989) The characterization of abasic sites in DNA heteroduplexes by site specific labeling with C13. J Am Chem Soc 110:1620–1622

    Article  Google Scholar 

  • Mansouri S, Choudhary G, Sarzala PM et al (2009) Suppression of human T-cell leukemia virus I gene expression by pokeweed antiviral protein. J Biol Chem 284:31453–31462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinet W, de Meyer GRY, Herman AG et al (2004) Reactive oxygen species induce RNA damage in human atherosclerosis. Eur J Clin Invest 34:323–327

    Article  CAS  PubMed  Google Scholar 

  • Masaoka A, Matsubara M, Hasegawa R et al (2003) Mammalian 5-formyluracil-DNA glycosylase: 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions. Biochemistry 42:5003–5012

    Article  CAS  PubMed  Google Scholar 

  • Matsubara M, Tanaka T, Terato H et al (2004) Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase. Nucleic Acids Res 32:5291–5302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCann WP, Hall LM, Nonidez WK (1983) Preparation, titration, and storage of chloroacetaldehyde for fluorometric determination of adenine and its derivatives. Anal Chem 55:1454–1455

    Article  CAS  Google Scholar 

  • Moazed D, Robertson JM, Noller HF (1988) Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334:362–364

    Article  CAS  PubMed  Google Scholar 

  • Morland I, Rolseth V, Luna L et al (2002) Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res 30:4926–4936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakhoul H, Ke J, Zhou X et al (2014) Ribosomopathies: mechanisms of disease. Clin Med Insights Blood Disord 7:7–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Obrig TG, Irvin JD, Hardesty B (1973) The effect of an antiviral peptide on the ribosomal reactions of the peptide elongation enzymes, EF-I and EF-II. Arch Biochem Biophys 155:278–289

    Article  CAS  PubMed  Google Scholar 

  • Operario DJ, Balakrishnan M, Bambara RA et al (2006) Reduced dNTP interaction of human immunodeficiency virus type 1 reverse transcriptase promotes strand transfer. J Biol Chem 281:32113–32121

    Article  CAS  PubMed  Google Scholar 

  • Ozawa A, Sawasaki T, Takai K et al (2003) RALyase; a terminator of elongation function of depurinated ribosomes. FEBS Lett 555:455–458

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Whitten DA, Wilkerson CG et al (2014) Dynamic changes in ribosome-associated proteome and phosphoproteome during deoxynivalenol-induced translation inhibition and ribotoxic stress. Toxicol Sci 138:217–233

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Whitten DA, Wu M et al (2013) Global protein phosphorylation dynamics during deoxynivalenol-induced ribotoxic stress response in the macrophage. Toxicol Appl Pharmacol 268:201–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh BA, Coetzer C, Tumer NE (2002) Pokeweed antiviral protein regulates the stability of its own mRNA by a mechanism that requires depurination but can be separated from depurination of the alpha-sarcin/ricin loop of rRNA. J Biol Chem 277:41428–41437

    Article  CAS  PubMed  Google Scholar 

  • Pettersen HS, Visnes T, Vågbø CB et al (2011) UNG-initiated base excision repair is the major repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity depends mainly on RNA incorporation. Nucleic Acids Res 39:8430–8444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce M, Kahn JN, Chiou J et al (2011) Development of a quantitative RT-PCR assay to examine the kinetics of ribosome depurination by ribosome inactivating proteins using Saccharomyces cerevisiae as a model. RNA 17:201–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roda RH, Balakrishnan M, Kim JK et al (2002) Strand transfer occurs in retroviruses by a pause-initiated two-step mechanism. J Biol Chem 277:46900–46911

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Seino T, Nishizawa S et al (2007) Strong binding of naphthyridine derivatives to cytosine in an AP site-containing DNA duplex and their application to fluorescence detection of single nucleotide polymorphisms. Nucleic Acids Symp Ser (Oxf) 51:313–314

    Article  CAS  Google Scholar 

  • Sawasaki T, Morishita R, Ozawa A et al (1999) Mechanism of ribosome RNA apurinic site specific lyase. Nucleic Acids Symp Ser 42:257–258

    Article  CAS  PubMed  Google Scholar 

  • Sawasaki T, Nishihara M, Endo Y (2008) RIP and RALyase cleave the sarcin/ricin domain, a critical domain for ribosome function, during senescence of wheat coleoptiles. Biochem Biophys Res Commun 370:561–565

    Article  CAS  PubMed  Google Scholar 

  • Shapiro R, Danzig M (1972) Acidic hydrolysis of deoxycytidine and deoxyuridine derivatives: the general mechanism of deoxyribonucleoside hydrolysis. Biochemistry 11:23–29

    Article  CAS  PubMed  Google Scholar 

  • Shifrin VI, Anderson P (1999) Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J Biol Chem 274:13985–13992

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker CJ, Green R (2011) Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc Natl Acad Sci 108:E1392–E1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth RP, Davenport MP, Mak J (2012) The origin of genetic diversity in HIV-1. Virus Res 169:415–429

    Article  CAS  PubMed  Google Scholar 

  • Spahn CM, Gomez-Lorenzo MG, Grassucci RA et al (2004) Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J 23:1008–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirpe F (2004) Ribosome-inactivating proteins. Toxicon 44:371–383

    Article  CAS  PubMed  Google Scholar 

  • Stirpe F, Battelli MG (2006) Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci 63:1850–1866

    Article  CAS  PubMed  Google Scholar 

  • Sturm MB, Schramm VL (2009) Detecting ricin: sensitive luminescent assay for ricin A-chain ribosome depurination kinetics. Anal Chem 81:2847–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Ohsumi S, Makino K (1994) Mechanistic studies on depurination and apurinic site chain breakage in oligodeoxyribonucleotides. Nucleic Acids Res 22:4997–5003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svarovskaia ES, Delviks KA, Hwang CK et al (2000) Structural determinants of murine leukemia virus reverse transcriptase that affect the frequency of template switching. J Virol 74:7171–7178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczepanik W, Dworniczek E, Ciesiołka J et al (2003) In vitro oxidative activity of cupric complexes of kanamycin A in comparison to in vivo bactericidal efficacy. J Inorg Biochem 94:355–364

    Article  CAS  PubMed  Google Scholar 

  • Takeshita M, Chang CN, Johnson F et al (1987) Oligodeoxynucleotides containing synthetic abasic sites: model substrates for DNA polymerases and apurinic/apyrimidinic endonucleases. J Biol Chem 262:10171–10179

    CAS  PubMed  Google Scholar 

  • Tanaka M, Jaruga P, Küpfer PA et al (2012) RNA oxidation catalyzed by cytochrome c leads to its depurination and cross-linking, which may facilitate cytochrome c release from mitochondria. Free Radic Biol Med 53:854–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanpure AA, Patheja P, Srivatsan SG (2012) Label-free fluorescence detection of the depurination activity of ribosome inactivating protein toxins. Chem Commun 48:501

    Article  CAS  Google Scholar 

  • Taylor S, Massiah A, Lomonossoff G et al (1994) Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J 5:827–835

    Article  CAS  PubMed  Google Scholar 

  • Tesh VL (2012) The induction of apoptosis by shiga toxins and ricin. Curr Top Microbiol Immunol 357:137–178

    PubMed  Google Scholar 

  • Tsuboi T, Kuroha K, Kudo K et al (2012) Dom34:Hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA. Mol Cell 46:518–529

    Article  CAS  PubMed  Google Scholar 

  • Venner H (1964) Studies on nucleic acids IX: stability of the N-glycosidic linkage in nucleosides. Hoppe Seylers Z Physiol Chem 339:14–27

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Hudak KA (2006) A novel interaction of pokeweed antiviral protein with translation initiation factors 4G and iso4G: a potential indirect mechanism to access viral RNAs. Nucleic Acids Res 34:1174–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Kawasaki T, Sako N et al (1997) Actions of pokeweed antiviral protein on virus-infected protoplasts. Biosci Biotechnol Biochem 61:994–997

    Article  CAS  PubMed  Google Scholar 

  • Wrzesiński J, Szczepanik W, Ciesiołka J et al (2005) tRNAPhe cleavage by aminoglycosides is triggered off by formation of an abasic site. Biochem Biophys Res Commun 331:267–271

    Article  PubMed  CAS  Google Scholar 

  • Zamboni M, Brigotti M, Rambelli F et al (1989) High-pressure-liquid-chromatographic and fluorimetric methods for the determination of adenine released from ribosomes by ricin and gelonin. Biochem J 259:639–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhabokritsky A, Mansouri S, Hudak KA (2014) Pokeweed antiviral protein alters splicing of HIV-1 RNAs, resulting in reduced virus production. RNA 20:1238–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Perry G, Smith MA et al (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154:1423–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Haslam DB (2005) A quantitative and highly sensitive luciferase-based assay for bacterial toxins that inhibit protein synthesis. J Med Microbiol 54:1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Zhou H-R (2003) Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mrna expression in spleens of mice exposed to the trichothecene vomitoxin. Toxicol Sci 72:130–142

    Article  CAS  PubMed  Google Scholar 

  • Zhou H-R, He K, Landgraf J et al (2014) Direct activation of ribosome-associated double-stranded RNA-dependent protein kinase (PKR) by Deoxynivalenol, anisomycin and ricin: a new model for ribotoxic stress response induction. Toxins (Basel) 6:3406–3425

    Article  CAS  Google Scholar 

  • Zhou H-R, Lau AS, Pestka JJ (2003) Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol Sci 74:335–344

    Article  CAS  PubMed  Google Scholar 

  • Zoltewicz J, Clark D, Sharpless T, Grahe G (1970) Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides. J Am Chem Soc 92:1741–1749

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin A. Hudak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jobst, K.A., Klenov, A., Neller, K.C.M., Hudak, K.A. (2016). Effect of Depurination on Cellular and Viral RNA. In: Jurga, S., Erdmann (Deceased), V., Barciszewski, J. (eds) Modified Nucleic Acids in Biology and Medicine. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-34175-0_12

Download citation

Publish with us

Policies and ethics