Skip to main content

Thinking Small: Circulating microRNAs as Novel Biomarkers for Diagnosis, Prognosis, and Treatment Monitoring in Breast Cancer

  • Chapter
  • First Online:
Modified Nucleic Acids in Biology and Medicine

Part of the book series: RNA Technologies ((RNATECHN))

  • 1471 Accesses

Abstract

Cancer initiation and progression are governed by both genetic and epigenetic events. Epigenetic alterations which include changes in DNA methylation, histone modifications, and noncoding RNA-mediated gene silencing are reversible and heritable. Aberrant epigenetic modifications are believed to be essential players in cancer initiation and progression. Recent advances in epigenetics have offered not only a deeper understanding of the underlying mechanisms of carcinogenesis but also new avenues for identification of clinically relevant putative biomarkers for the early detection, prognosis, monitoring of treatment response, and risk stratification of cancer patients. Following identification of cell-free nucleic acids in systematic circulation, cumulating evidences have demonstrated the potential of cell-free epigenetic biomarkers in the body fluids for cancer. Recently, the emergence of microRNAs as biomarkers has added an extra dimension to the “molecular signatures” of breast cancer. In this chapter, we summarize the currently published state-of-the-art research on the role of the circulating microRNAs in clinical utility for breast cancer, the most common cancer in women. In addition, we also discuss the current obstacles that have limited the routine use of epigenetic biomarkers and provide future perspectives, so that these novel cancer biomarkers can be readily developed for significant clinical improvement in the management of breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abba M, Mudduluru G, Allgayer H (2012) MicroRNAs in cancer: small molecules, big chances. Anti-Cancer Agent Med Chem 12:733–743

    Article  CAS  Google Scholar 

  • Ai J, Zhang R, Li Y et al (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391:73–77

    Article  CAS  PubMed  Google Scholar 

  • Asaga S, Kuo C, Nguyen T et al (2011) Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem 57:84–91

    Article  CAS  PubMed  Google Scholar 

  • Bala S, Tilahun Y, Taha O et al (2012) Increased microRNA-155 expression in the serum and peripheral monocytes in chronic HCV infection. J Transl Med 10:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brase JC, Johannes M, Schlomm T et al (2011) Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128:608–616

    Article  CAS  PubMed  Google Scholar 

  • Budhu A, Ji J, Wang XW (2010) The clinical potential of microRNAs. J Hematol Oncol 3:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan M, Liaw CS, Ji SM et al (2013) Identification of circulating microRNA signatures for breast cancer detection. Clin Cancer Res 19:4477–4487

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Cai F, Zhang B et al (2013) The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol 34:455–462

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Goswami CP, Burnett RM et al (2014) Cancer affects microRNA expression, release, and function in cardiac and skeletal muscle. Cancer Res 74:4270–4281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coates AS, Colleoni M, Goldhirsch A (2012) Is adjuvant chemotherapy useful for women with luminal a breast cancer? J Clin Oncol 30:1260–1263

    Article  CAS  PubMed  Google Scholar 

  • Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51

    Article  CAS  PubMed  Google Scholar 

  • Cristofanilli M, Budd GT, Ellis MJ et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791

    Article  CAS  PubMed  Google Scholar 

  • Cuk K, Zucknick M, Heil J et al (2013) Circulating microRNAs in plasma as early detection markers for breast cancer. Int J Cancer 132:1602–1612

    Article  CAS  PubMed  Google Scholar 

  • Davies C, Godwin J, Gray R et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378:771–784

    Article  CAS  PubMed  Google Scholar 

  • Eichelser C, Flesch-Janys D, Chang-Claude J et al (2013) Deregulated serum concentrations of circulating cell-free microRNAs miR-17, miR-34a, miR-155, and miR-373 in human breast cancer development and progression. Clin Chem 59:1489–1496

    Article  CAS  PubMed  Google Scholar 

  • Freres P, Josse C, Bovy N et al (2015) Neoadjuvant chemotherapy in breast cancer patients induces miR-34a and miR-122 expression. J Cell Physiol 230:473–481

    Article  CAS  PubMed  Google Scholar 

  • Friel AM, Corcoran C, Crown J et al (2010) Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer. Breast Cancer Res Treat 123:613–625

    Article  CAS  PubMed  Google Scholar 

  • Gezer U, Keskin S, Igci A et al (2014) Abundant circulating microRNAs in breast cancer patients fluctuate considerably during neoadjuvant chemotherapy. Oncol Lett 8:845–848

    PubMed  PubMed Central  Google Scholar 

  • Gibbings DJ, Ciaudo C, Erhardt M et al (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149

    Article  CAS  PubMed  Google Scholar 

  • Gidlof O, van der Brug M, Ohman J et al (2013) Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood 121(3908–3917):S3901–S3926

    Google Scholar 

  • Gilad S, Meiri E, Yogev Y et al (2008) Serum microRNAs are promising novel biomarkers. PLoS One 3, e3148

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo L-J, Zhang Q-Y (2012) Decreased serum miR-181a is a potential new tool for breast cancer screening. Int J Mol Med 30:680–686

    CAS  PubMed  Google Scholar 

  • Hasselmann DO, Rappl G, Tilgen W et al (2001) Extracellular tyrosinase mRNA within apoptotic bodies is protected from degradation in human serum. Clin Chem 47:1488–1489

    CAS  PubMed  Google Scholar 

  • Heneghan HM, Miller N, Lowery AJ et al (2010) Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 251:499–505

    Article  PubMed  Google Scholar 

  • Heneghan HM, Miller N, Kerin MJ (2011) Circulating microRNAs: promising breast cancer biomarkers. Breast Cancer Res 13:402

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Dong J, Wang LE et al (2012) Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls. Carcinogenesis 33:828–834

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Huang D, Ni S et al (2010) Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 127:118–126

    Article  CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  CAS  PubMed  Google Scholar 

  • Joosse SA, Muller V, Steinbach B et al (2014) Circulating cell-free cancer-testis MAGE-A RNA, BORIS RNA, let-7b and miR-202 in the blood of patients with breast cancer and benign breast diseases. Br J Cancer 111:909–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung EJ, Santarpia L, Kim J et al (2012) Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer 118:2603–2614

    Article  CAS  PubMed  Google Scholar 

  • Kodahl AR, Lyng MB, Binder H et al (2014a) Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: a case control study. Mol Oncol 8:874–883

    Article  CAS  PubMed  Google Scholar 

  • Kodahl AR, Zeuthen P, Binder H et al (2014b) Alterations in circulating miRNA levels following early-stage estrogen receptor-positive breast cancer resection in post-menopausal women. PLoS One 9:e101950

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosaka N, Iguchi H, Ochiya T (2010a) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101:2087–2092

    Article  CAS  PubMed  Google Scholar 

  • Kosaka N, Iguchi H, Yoshioka Y et al (2010b) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krichevsky AM, King KS, Donahue CP et al (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Keerthana R, Pazhanimuthu A et al (2013) Overexpression of circulating miRNA-21 and miRNA-146a in plasma samples of breast cancer patients. Indian J Biochem Biophys 50:210–214

    CAS  PubMed  Google Scholar 

  • Lawrie CH, Gal S, Dunlop HM et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675

    Article  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Liu M, Ma F et al (2014) Circulating miR-19a and miR-205 in serum may predict the sensitivity of luminal: a subtype of breast cancer patients to neoadjuvant chemotherapy with epirubicin plus paclitaxel. PLoS One 9:e104870

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wang S, Cao X et al (2014) Analysis of circulating microRNA biomarkers for breast cancer detection: a meta-analysis. Tumour Biol 35:12245–12253

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Madhavan D, Zucknick M, Wallwiener M et al (2012) Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clin Cancer Res 18:5972–5982

    Article  CAS  PubMed  Google Scholar 

  • Mar-Aguilar F, Mendoza-Ramirez JA, Malagon-Santiago I et al (2013) Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis Markers 34:163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng F, Henson R, Lang M et al (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller V, Gade S, Steinbach B et al (2014) Changes in serum levels of miR-21, miR-210, and miR-373 in HER2-positive breast cancer patients undergoing neoadjuvant therapy: a translational research project within the Geparquinto trial. Breast Cancer Res Treat 147:61–68

    Article  PubMed  Google Scholar 

  • Ng EK, Li R, Shin VY et al (2013) Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One 8:e53141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park IH, Kang JH, Lee KS et al (2014) Identification and clinical implications of circulating microRNAs for estrogen receptor-positive breast cancer. Tumour Biol 35:12173–12180

    Article  CAS  PubMed  Google Scholar 

  • Qian B, Katsaros D, Lu L et al (2009) High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Res Treat 117:131–140

    Article  CAS  PubMed  Google Scholar 

  • Qu KZ, Zhang K, Li H et al (2011) Circulating microRNAs as biomarkers for hepatocellular carcinoma. J Clin Gastroenterol 45:355–360

    Article  CAS  PubMed  Google Scholar 

  • Rechavi O, Erlich Y, Amram H et al (2009) Cell contact-dependent acquisition of cellular and viral nonautonomously encoded small RNAs. Genes Dev 23:1971–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid G, Kirschner MB, van Zandwijk N (2011) Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 80:193–208

    Article  PubMed  Google Scholar 

  • Roth C, Rack B, Muller V et al (2010) Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 12:R90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakr BJ, Dizon DS (2011) Breast cancer: adjuvant modalities. Clin Obstet Gynecol 54:150–156

    Article  PubMed  Google Scholar 

  • Sato F, Tsuchiya S, Terasawa K et al (2009) Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS One 4, e5540

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J, Hu Q, Schrauder M et al (2014) Circulating miR-148b and miR-133a as biomarkers for breast cancer detection. Oncotarget 5:5284–5294

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel R, Ma J, Zou Z et al (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  PubMed  Google Scholar 

  • Slamon D, Eiermann W, Robert N et al (2011) Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 365:1273–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sochor M, Basova P, Pesta M et al (2014) Oncogenic microRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer 14:448

    Article  PubMed  PubMed Central  Google Scholar 

  • Taback B, Giuliano AE, Hansen NM et al (2003) Detection of tumor-specific genetic alterations in bone marrow from early-stage breast cancer patients. Cancer Res 63:1884–1887

    CAS  PubMed  Google Scholar 

  • Tsang JC, Lo YM (2007) Circulating nucleic acids in plasma/serum. Pathology 39:197–207

    Article  CAS  PubMed  Google Scholar 

  • Turchinovich A, Weiz L, Langheinz A et al (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Zhang S, Weber J et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38:7248–7259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Tan G, Dong L et al (2012) Circulating MiR-125b as a marker predicting chemoresistance in breast cancer. PLoS One 7:e34210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weickmann JL, Glitz DG (1982) Human ribonucleases: quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. J Biol Chem 257:8705–8710

    CAS  PubMed  Google Scholar 

  • Wu Q, Lu Z, Li H et al (2011) Next-generation sequencing of microRNAs for breast cancer detection. J Biomed Biotechnol 2011:597145

    PubMed  PubMed Central  Google Scholar 

  • Wu X, Somlo G, Yu Y et al (2012) De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. J Transl Med 10:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan LX, Huang XF, Shao Q et al (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Qian J, Chen Y et al (2014) Prognostic role of circulating microRNA-21 in cancers: evidence from a meta-analysis. Tumour Biol 35:6365–6371

    Article  CAS  PubMed  Google Scholar 

  • Yu DC, Li QG, Ding XW et al (2011) Circulating microRNAs: potential biomarkers for cancer. Int J Mol Sci 12:2055–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zearo S, Kim E, Zhu Y et al (2014) MicroRNA-484 is more highly expressed in serum of early breast cancer patients compared to healthy volunteers. BMC Cancer 14:200

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng RC, Zhang W, Yan XQ et al (2013) Down-regulation of miRNA-30a in human plasma is a novel marker for breast cancer. Med Oncol 30:477

    Article  PubMed  Google Scholar 

  • Zhang C, Wang C, Chen X et al (2010) Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem 56:1871–1879

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Shen J, Medico L et al (2010) A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 5:e13735

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao R, Wu J, Jia W et al (2011) Plasma miR-221 as a predictive biomarker for chemoresistance in breast cancer patients who previously received neoadjuvant chemotherapy. Onkologie 34:675–680

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin-Long Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, YL. (2016). Thinking Small: Circulating microRNAs as Novel Biomarkers for Diagnosis, Prognosis, and Treatment Monitoring in Breast Cancer. In: Jurga, S., Erdmann (Deceased), V., Barciszewski, J. (eds) Modified Nucleic Acids in Biology and Medicine. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-34175-0_10

Download citation

Publish with us

Policies and ethics