Skip to main content

Prediction of Infinite Words with Automata

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9691))

Included in the following conference series:

  • 467 Accesses

Abstract

In the classic problem of sequence prediction, a predictor receives a sequence of values from an emitter and tries to guess the next value before it appears. The predictor masters the emitter if there is a point after which all of the predictor’s guesses are correct. In this paper we consider the case in which the predictor is an automaton and the emitted values are drawn from a finite set; i.e., the emitted sequence is an infinite word. We examine the predictive capabilities of finite automata, pushdown automata, stack automata (a generalization of pushdown automata), and multihead finite automata. We relate our predicting automata to purely periodic words, ultimately periodic words, and multilinear words, describing novel prediction algorithms for mastering these sequences.

Due to space constraints, some proofs are only sketched. The full version is available at http://arxiv.org/abs/1603.02597.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angluin, D., Fisman, D.: Learning regular omega languages. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds.) ALT 2014. LNCS, vol. 8776, pp. 125–139. Springer, Heidelberg (2014)

    Google Scholar 

  2. Angluin, D., Smith, C.H.: Inductive inference: theory and methods. ACM Comput. Surv. 15(3), 237–269 (1983). http://doi.acm.org/10.1145/356914.356918

    Article  MathSciNet  Google Scholar 

  3. Blackwell, D.: Minimax vs. Bayes prediction. Probab. Eng. Inf. Sci. 9(1), 53–58 (1995). http://journals.cambridge.org/article_S0269964800003685

    Article  MathSciNet  MATH  Google Scholar 

  4. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf. Control 28(2), 125–155 (1975). http://www.sciencedirect.com/science/article/pii/S0019995875902612

    Article  MathSciNet  MATH  Google Scholar 

  5. Broglio, A., Liardet, P.: Predictions with automata. In: Symbolic Dynamics and its Applications. Contemporary Mathematics, vol. 135, pp. 111–124. American Mathematical Society (1992)

    Google Scholar 

  6. Cerruti, U., Giacobini et al., M., Liardet, P.: Prediction of binary sequences by evolving finite state machines. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 42–53. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Drucker, A.: High-confidence predictions under adversarial uncertainty. TOCT 5(3), 12 (2013). http://doi.acm.org/10.1145/2493252.2493257

    Article  MathSciNet  MATH  Google Scholar 

  8. Endrullis, J., Hendriks, D., Klop, J.W.: Degrees of streams. In: Integers, Electronic Journal of Combinatorial Number Theory 11B(A6), 1–40. 2010 Proceedings of the Leiden Numeration Conference (2011)

    Google Scholar 

  9. Feder, M., Merhav, N., Gutman, M.: Universal prediction of individual sequences. IEEE Trans. Inf. Theory 38, 1258–1270 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14(2), 389–418 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967). http://groups.lis.illinois.edu/amag/langev/paper/gold67limit.html

    Article  MATH  Google Scholar 

  12. Hibbard, B.: Adversarial sequence prediction. In: Proceedings of the 2008 Conference on Artificial General Intelligence 2008: Proceedings of the First AGI Conference. pp. 399–403. IOS Press, Amsterdam, The Netherlands (2008). http://dl.acm.org/citation.cfm?id=1566174.1566212

  13. Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: origins and directions. Theor. Comput. Sci. 412(1–2), 83–96 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hromkovič, J.: One-way multihead deterministic finite automata. Acta Informatica 19(4), 377–384 (1983). http://dx.doi.org/10.1007/BF00290734

    Article  MathSciNet  MATH  Google Scholar 

  15. Johansen, P.: Inductive inference of ultimately periodic sequences. BIT Numer. Math. 28(3), 573–580 (1988). http://dx.doi.org/10.1007/BF01941135

    Article  MathSciNet  MATH  Google Scholar 

  16. Leblanc, B., Lutton, E., Allouche, J.-P.: Inverse problems for finite automata: a solution based on genetic algorithms. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 157–166. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Legg, S.: Is there an elegant universal theory of prediction? In: Balcázar, J.L., Long, P.M., Stephan, F. (eds.) ALT 2006. LNCS (LNAI), vol. 4264, pp. 274–287. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. O’Connor, M.G.: An unpredictability approach to finite-state randomness. J. Comput. Syst. Sci. 37(3), 324–336 (1988). http://dx.doi.org/10.1016/0022-0000(88)90011-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Sedgewick, R., Szymanski, T.G., Yao, A.C.: The complexity of finding cycles in periodic functions. SIAM J. Comput. 11(2), 376–390 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shubert, B.: Games of prediction of periodic sequences. Technical report, United States Naval Postgraduate School (1971)

    Google Scholar 

  21. Smith, T.: On infinite words determined by stack automata. In: FSTTCS 2013. Leibniz International Proceedings in Informatics (LIPIcs), vol. 24, pp. 413–424. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013)

    Google Scholar 

  22. Solomonoff, R.: A formal theory of inductive inference. part i. Inf. Control 7(1), 1–22 (1964). http://www.sciencedirect.com/science/article/pii/S0019995864902232

    Article  MathSciNet  MATH  Google Scholar 

  23. Wagner, K., Wechsung, G.: Computational complexity. Mathematics and its Applications. Springer (1986)

    Google Scholar 

Download references

Acknowledgments

I would like to thank my Ph.D. advisor at Northeastern, Rajmohan Rajaraman, for his helpful comments and suggestions. The continuation of this work at Marne-la-Vallée was supported by the Agence Nationale de la Recherche (ANR) under the project EQINOCS (ANR-11-BS02-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Smith, T. (2016). Prediction of Infinite Words with Automata. In: Kulikov, A., Woeginger, G. (eds) Computer Science – Theory and Applications. CSR 2016. Lecture Notes in Computer Science(), vol 9691. Springer, Cham. https://doi.org/10.1007/978-3-319-34171-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34171-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34170-5

  • Online ISBN: 978-3-319-34171-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics