Quantization of Classical Ensembles via an Exact Uncertainty Principle

  • Michael J. W. HallEmail author
  • Marcel Reginatto
Part of the Fundamental Theories of Physics book series (FTPH, volume 184)


The usual Heisenberg uncertainty relation may be replaced by an exact equality, valid for all states. This can be shown by carrying out a decomposition of the momentum of a quantum state into classical and nonclassical components and choosing suitable measures of position and momentum uncertainty. The exact uncertainty relation obtained in this way is sufficiently strong to provide the basis for moving from classical mechanics to quantum mechanics. In particular, the assumption of a nonclassical momentum fluctuation, having a strength which scales inversely with uncertainty in position, leads from the classical equations of motion to the Schrödinger equation. The approach based on the exact uncertainty principle is conceptually very simple, being based on the core notion of statistical uncertainty, intrinsic to any interpretation of quantum theory. This quantization procedure is not restricted to particles but can also be used to derive bosonic field equations. It is remarkable that the basic underlying concept, the addition of nonclassical momentum fluctuations to a classical ensemble, carries through from quantum particles to quantum fields, without creating conceptual difficulties, although significant technical generalizations are needed. This logical consistency and range of applicability is a further strength of the exact uncertainty approach.


Momentum Density Classical Ensemble Jacobi Formulation Quantization Procedure Classical Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hall, M.J.W., Reginatto, M.: Schrödinger equation from an exact uncertainty principle. J. Phys A 35, 3289–3303 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Hall, M.J.W., Kumar, K., Reginatto, M.: Bosonic field equations from an exact uncertainty principle. J. Phys A 36, 9779–9794 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927). English translation in: Wheeler, J.A., Zurek, W.H. (eds.) Quantum theory and measurement, pp. 62–84. Princeton University Press, Princeton (1983)Google Scholar
  4. 4.
    Hall, M.J.W.: Quantum properties of classical Fisher information. Phys. Rev. A 62, 012107 (2000)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Hall, M.J.W.: Exact uncertainty relations. Phys. Rev. A 64, 052103 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Johansen, L.M.: What is the value of an observable between pre- and postselection? Phys. Lett. A 322, 298–300 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hall, M.J.W.: Prior information: how to circumvent the standard joint-measurement uncertainty relation. Phys. Rev. A 69, 052113 (2004)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Landau, L.D., Lifschitz, E.M.: Quantum mechanics. Pergamon Press, Oxford (1977)zbMATHGoogle Scholar
  9. 9.
    Schuh, J.F.: Mathematical tools for modern physics. Philips Technical Library, Eindehoven (1968)Google Scholar
  10. 10.
    Hall, M.J.W., Reginatto, M.: Quantum mechanics from a Heisenberg-type equality. Fortschr. Phys. 50, 646–651 (2002). Reprinted in: Papenfuss, D., Lüst, D., Schleich W.P. (eds.) 100 Years Werner Heisenberg: Works and Impact, pp. 217–222. Wiley, Berlin (2002)Google Scholar
  11. 11.
    Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62–93 (1976)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Ván, P., Fülöp, T.: Weakly non-local fluid mechanics: the Schrödinger equation. Proc. R. Soc. A 462, 541–557 (2006)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Rudnicki, L.: Nonlinear Schrödinger equation from generalized exact uncertainty principle. (2016)Google Scholar
  14. 14.
    Fisher, R.A.: Theory of statistical estimation. Proc. Camb. Philos. Soc. 22, 700–725 (1925)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Cox, D.R., Hinkley, D.V.: Theoretical Statistics. Chapman and Hall, London (1974)CrossRefzbMATHGoogle Scholar
  16. 16.
    Brown, L.S.: Quantum Field Theory. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  17. 17.
    Schweber, S.S.: An Introduction to Relativistic Quantum Field Theory. Row, Peterson and Co., New York (1961)zbMATHGoogle Scholar
  18. 18.
    Dirac, P.A.M.: Lectures on Quantum Field Theory. Academic Press, New York (1966)Google Scholar
  19. 19.
    Wheeler, J.A.: Superspace. In: Gilbert, R.P., Newton, R.G. (eds.) Analytical Methods in Mathematical Physics, pp. 335–378. Gordon and Breach, New York (1970)Google Scholar
  20. 20.
    Kiefer, C.: Quantum Gravity. Oxford University Press, Oxford (2012)zbMATHGoogle Scholar
  21. 21.
    Gerlach, U.H.: Derivation of the the Einstein equations from the semiclassical approximation to quantum geometrodynamics. Phys. Rev. 177, 1929–1941 (1969)ADSCrossRefGoogle Scholar
  22. 22.
    Peres, A.: On Cauchy’s problem in general relativity – II. Nuovo Cim. XXVI, 53–62 (1962)Google Scholar
  23. 23.
    Kontoleon, N., Wiltshire, D.L.: Operator ordering and consistency of the wave function of the Universe. Phys. Rev. D 59, 063513 (1999)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Vilenkin, A.: Boundary conditions in quantum cosmology. Phys. Rev. D 33, 3560–3569 (1986)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Hawking, S.W., Page, D.N.: Operator ordering and the flatness of the universe. Nucl. Phys. B 264, 185–196 (1986)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Tsamis, N.C., Woodard, R.P.: The factor-ordering problem must be regulated. Phys. Rev. D 36, 3641–3650 (1987)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Bergmann, P.G.: Hamilton-Jacobi and Schrödinger theory in theories with first-class Hamiltonian constraints. Phys. Rev. 144, 1078–1080 (1966)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett 57, 2244–2247 (1986)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Goldstein, H.: Classical Mechanics. Addison-Wesley, New York (1950)zbMATHGoogle Scholar
  30. 30.
    Roman, P.: Introduction to Quantum Field Theory. Wiley, New York (1969)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centre for Quantum DynamicsGriffith UniversityBrisbaneAustralia
  2. 2.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations