Advertisement

Observables, Symmetries and Constraints

  • Michael J. W. HallEmail author
  • Marcel Reginatto
Chapter
  • 697 Downloads
Part of the Fundamental Theories of Physics book series (FTPH, volume 184)

Abstract

The notion of observable is one of the key concepts of a physical theory. We introduce a definition of observables within the framework of ensembles on configuration space, based on the idea of associating observables with generators of canonical transformations acting on the phase space of the fundamental variables P and S. These ensemble observables encompass both classical and quantum observables. Remarkably, for classical observables the Poisson bracket of the ensemble observables is isomorphic to the usual bracket on standard classical phase space, while for quantum observables it is isomorphic to the commutator in Hilbert space. We show that the formalism allows for the generalisation of certain quantum concepts, such as eigenstates, eigenvalues, weak values and transition probabilities, to arbitrary configuration ensembles. We discuss also systems with symmetries, in particular examples which involve representations of the Galilean group for the case of a free particle and rotations defined on discrete configuration spaces. Finally, we generalise and reinterpret quantum superselection rules in terms of constraints on observables.

References

  1. 1.
    Wigner, E.P.: The problem of measurement. Am. J. Phys. 31, 6–15 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Goldstein, H.: Classical Mechanics. Addison-Wesley, New York (1950)zbMATHGoogle Scholar
  3. 3.
    Hall, M.J.W., Reginatto, M.: Interacting classical and quantum ensembles. Phys. Rev. A 72, 062109 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41, 11–20 (1990)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Hall, M.J.W.: Exact uncertainty relations. Phys. Rev. A 64, 052103 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Johansen, L.M.: What is the value of an observable between pre- and postselection? Phys. Lett. A 322, 298–300 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hall, M.J.W.: Prior information: how to circumvent the standard joint-measurement uncertainty relation. Phys. Rev. A 69, 052113 (2004)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dressel, J.: Weak values as interference phenomena. Phys. Rev. A 91, 032116 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Finkelstein, R.J.: Nonrelativistic Mechanics. W. A. Benjamin, Reading, Massachusetts (1973)Google Scholar
  11. 11.
    Hall, M.J.W.: Quantum properties of classical Fisher information. Phys. Rev. A 62, 012107 (2000)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Dirac, P.A.M.: Lectures on Quantum Field Theory, Chaps. 14–15. Academic, New York (1966)Google Scholar
  13. 13.
    Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems, Chap. 1. Princeton University Press, New Jersey (1992)Google Scholar
  14. 14.
    Weinberg, S.: The Quantum Theory of Fields, vol. I. Cambridge University Press, Cambridge (1995)Google Scholar
  15. 15.
    Hall, M.J.W.: Superselection from canonical constraints. J. Phys. A 27, 7799–7811 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centre for Quantum DynamicsGriffith UniversityBrisbaneAustralia
  2. 2.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations