Skip to main content

Coupling of Quantum Fields to Classical Gravity

  • Chapter
  • First Online:
Ensembles on Configuration Space

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 184))

  • 922 Accesses

Abstract

We consider ensembles on configuration space that consist of quantum fields which interact with and are the source of a classical gravitational field. These are hybrid systems where gravity remains classical while matter is described by quantized fields. There are some well known arguments in the literature which claim that such models are not possible. However, an examination of the most prominent ones, that are detailed enough to allow scrutiny, indicates that the hybrid models considered here are not excluded by any of the consistency arguments. We illustrate the approach with two examples. Our first example is a cosmological model. We consider the case of a closed Robertson–Walker universe with a massive quantum scalar field and solve the equations using a particular ansatz which selects a highly non-classical solution, one in which the scale factor of the Robertson–Walker universe is restricted to discrete values as a consequence of the interaction of the classical gravitational field with the quantized scalar field. We discuss this cosmological model in two approximations, that of a minisuperspace model and that of a midisuperspace model. Our second example concerns black holes. We consider CGHS black holes and show that we recover Hawking radiation from the equations that describe a hybrid system consisting of a classical CGHS black hole in a collapsing geometry interacting with a quantized scalar field. We also show that the hybrid model provides a natural resolution to the well known problem of time in quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albers, M., Kiefer, C., Reginatto, M.: Measurement analysis and quantum gravity. Phys. Rev. D 78, 064051 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  2. Rosenfeld, L.: On quantization of fields. Nucl. Phys. 40, 353–356 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlip, S.: Is quantum gravity necessary? Class. Q. Grav. 25, 154010 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Boughn, S.: Nonquantum gravity. Found. Phys. 39, 331–351 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Butterfield, J., Isham, C.: In: Callender, C., Huggett, N. (eds.) Spacetime and the Philosphical Challenge of Quantum Gravity. Physics meets philosophy at the Planck scale. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  6. Dyson, F.: Is a graviton detectable? Int. J. Mod. Phys. A 28, 1330041 (2013)

    Article  ADS  Google Scholar 

  7. Dyson, F.: The world on a string. N. Y. Rev. Books 51(8), 16–19 (2004)

    Google Scholar 

  8. Rothman, T., Boughn, S.: Can gravitons be detected? Found. Phys. 36, 1801–1825 (2006)

    Article  ADS  MATH  Google Scholar 

  9. Boughn, S., Rothman, T.: Aspects of graviton detection: graviton emission and absorption by atomic hydrogen. Class. Quantum Grav. 23, 5839–5852 (2006)

    Article  ADS  MATH  Google Scholar 

  10. Parker, L., Toms, D.: Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  11. Diósi, L.: Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A 105, 199–202 (1984)

    Article  ADS  Google Scholar 

  12. DeWitt, B.S.: The Quantization of Geometry. In: Witten, L. (ed.) Gravitation: an introduction to current research, pp. 266–381. Wiley, New York (1962)

    Google Scholar 

  13. Eppley, K., Hannah, E.: The necessity of quantizing the gravitational field. Found. Phys. 7, 51–68 (1977)

    Article  ADS  Google Scholar 

  14. Page, D.N., Geilker, C.D.: Indirect evidence for quantum gravity. Phys. Rev. Lett. 47, 979–982 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  15. Feynman, R.P.: The Feynman Lectures on Gravitation. Addison-Wesley, Boston (1995). Reading

    Google Scholar 

  16. Mattingly, J.: Why Eppley and Hannah’s thought experiment fails. Phys. Rev. D 73, 064025 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Huggett, N., Callender, C.: Why quantize gravity (or any other field for that matter)? Philos. Sci. 68, S382–S394 (2001)

    Article  MathSciNet  Google Scholar 

  18. Mattingly, J.: Is quantum gravity necessary? In: Kox, A.J., Eisenstaedt, J. (eds.) The universe of general relativity (Einstein Studies Volume 11), pp. 327–338. Birkhäuser, Boston (2005)

    Chapter  Google Scholar 

  19. Kiefer, C.: Quantum Gravity. Oxford University Press, Oxford (2012)

    MATH  Google Scholar 

  20. Kiefer, C.: Conceptual problems in quantum gravity and quantum cosmology. ISRN Math. Phys. 2013, 509316 (2013)

    Article  ADS  MATH  Google Scholar 

  21. Hall, M.J.W., Reginatto, M.: Interacting classical and quantum ensembles. Phys. Rev. A 72, 062109 (2005)

    Article  ADS  Google Scholar 

  22. Reginatto, M.: Cosmology with quantum matter and a classical gravitational field: the approach of configuration-space ensembles. J. Phys.: Conf. Ser. 442, 012009 (2013)

    ADS  Google Scholar 

  23. Jackiw, R.: Diverse Topics in Theoretical and Mathematical Physics. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  24. Hatfield, B.: Quantum Field Theory of Point Particles and Strings. Perseus Books, Cambridge (1992)

    MATH  Google Scholar 

  25. Long, D.V., Shore, G.M.: The Schrödinger wave functional and vacuum states in curved spacetime. Nucl. Phys. B 530, 247–278 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Herdeiro, C.A.R., Ribeiro, R.H.: Sampaio. M.: Scalar Casimir effect on a D-dimensional Einstein static universe. Class. Quantum Grav. 25, 165010 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kiefer, C., Zeh, H.D.: Arrow of time in a recollapsing quantum universe. Phys. Rev. D 51, 4145–4153 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  28. Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  29. Callan, C.G., Giddings, S.B., Harvey, J.A., Strominger, A.: Evanescent black holes. Phys. Rev. D 45, R1005–R1009 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  30. Strominger, A.: Les Houches lectures on black holes. arXiv:hep-th/9501071v1 (1995)

  31. Demers, J.-G., Kiefer, C.: Decoherence of black holes by Hawking radiation. Phys. Rev. D 53, 7050–7061 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  32. Louis-Martinez, D., Gegenberg, J., Kunstatter, G.: Exact Dirac quantization of all 2D dilaton gravity theories. Phys. Lett. B 321, 193–198 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  33. Kiefer, C.: Hawking radiation from decoherence. Class. Quantum Grav. 18, L151–L154 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Kiefer, C.: Does time exist in quantum gravity? arXiv:0909.3767v1 [gr-qc] (2009)

  35. Kiefer, C.: The Semiclassical Approximation to Quantum Gravity. In: Ehlers, J., Friedrich, H. (eds.) Canonical gravity: from classical to quantum, pp. 170–212. Springer, Berlin (1994)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. W. Hall .

Appendix: Ground State Gaussian Functional Solution

Appendix: Ground State Gaussian Functional Solution

We follow the presentation given in App. C of Ref. [22]. To solve Eq. (11.15) for the case \(S=0\),

$$\begin{aligned}&\int \mathrm{d}r N \left[ -\frac{1}{2\varLambda R^2} \left( \frac{1}{A}\frac{\delta ^{2}A}{\delta \phi ^{2}}\right) \right. + \lambda \frac{\varLambda R^2}{2} + V \nonumber \\&\quad + \left. \frac{R^2 }{2 \varLambda }\phi ^{\prime 2} + \frac{\varLambda R^{2} m^2}{2 } \phi ^{ 2} \right] = 0, \end{aligned}$$
(11.102)

consider the ansatz

$$\begin{aligned} A \sim \exp \left\{ -\frac{1}{2} \int \int \mathrm{d}y \, \mathrm{d}z \, \varLambda _y \, \varLambda _z \, R_y^2 \, R_z^2 \; \phi _y \, K_{yz} \, \phi _z \right\} . \end{aligned}$$
(11.103)

Evaluate \(\frac{\delta ^{2}A}{\delta \phi ^{2}}\) and collect terms that have the same power of \(\phi \). This leads to the following pair of equations for the kernel \(K_{xy}\),

$$\begin{aligned} \int \mathrm{d}r\, N \left[ \lambda \frac{\varLambda R^2}{2} + V(R,\varLambda ) + \frac{\varLambda _r R_r^2}{2} K_{rr} \right] =0 \end{aligned}$$
(11.104)

and

$$\begin{aligned} \int \mathrm{d}r \, \varLambda _r R_r^2 \, N \left[ \frac{\phi _r^{\prime 2}}{2 \varLambda _r^2} + \frac{m^2}{2}\phi _r^{ 2} - \frac{1}{2} \int \int \mathrm{d}y \mathrm{d}z \,\varLambda _y R_y^2 \varLambda _z R_z^2 \,\phi _{y}K_{yr}K_{rz}\phi _{z} \right] =0 . \end{aligned}$$
(11.105)

After an integration by parts in Eq. (11.105), the equations for \(K_{xy}\) take a form which is standard in the context of the Schrödinger functional representation of quantum field theory in curved spacetimes [19, 23–25].

Assume a foliation of spaces of constant positive curvature and a constant lapse function N and look for a solution valid under these conditions. Note that the \(\varLambda \) and R that appear in the line element of Eq. (10.24) satisfy \(\sqrt{h}=\varLambda R^2\) and \(h^{rr}=\varLambda ^{-2}\), where \(h^{kl}\) is the inverse metric tensor on the three-dimensional spatial hypersurface of constant curvature. Then, Eq. (11.105) can be written in the form

$$\begin{aligned}&\int \mathrm{d}r \sqrt{h_r} \left[ \frac{1}{2}h^{rr}\frac{\partial \phi _r}{\partial r}\frac{\partial \phi _r}{\partial r} \right. + \frac{m^2}{2}\phi _r^{ 2} \nonumber \\&\quad -\left. \frac{1}{2} \int \int \mathrm{d}y \mathrm{d}z \sqrt{h_y} \sqrt{h_z}\,\phi _{y}K_{yr}K_{rz}\phi _{z} \right] = 0, \end{aligned}$$
(11.106)

and the kernel \(K_{xy}\) satisfies

$$\begin{aligned} \int \mathrm{d}r \sqrt{h_r} K_{yr}K_{rz} = \left[ -\frac{1}{\sqrt{h_y}}\frac{\partial }{\partial y}\left( h^{yy} \sqrt{h_y} \frac{\partial }{\partial y} \right) + m^2 \right] \delta (y,z), \end{aligned}$$
(11.107)

where \(\delta (y,z)=\frac{1}{\sqrt{h_y}}\delta (y-z)\) is the delta function on the hypersurface.

To get an explicit expression for \(K_{xy}\) that solves Eq. (11.107), introduce a fixed, particular set of coordinates for the line element of Eq. (10.24). Let

$$\begin{aligned} N = 1, \quad N_r=0, \quad \varLambda =a_0, \quad R=a_0 \, \sin \, r, \end{aligned}$$
(11.108)

where \(r\in [0,2\pi )\) and \(a_0\) can be interpreted as the scale factor of a closed Robertson–Walker universe. Then the solution of Eq. (11.107) is given by

$$\begin{aligned} K_{xy} = \frac{1}{2 a_0^4} \sum _n \sqrt{\gamma _n } \, \psi ^{(n)}_x \psi ^{(n)}_y, \end{aligned}$$
(11.109)

where the basis functions \(\psi ^{(n)}_r\) are solutions of a Schrödinger-type equation in a space of constant curvature,

$$\begin{aligned} -\frac{1}{\sin ^2r}\,\frac{\partial }{\partial r} \left( \sin ^2 r \, \frac{\partial \psi _r^{(n)}}{\partial r} \right) + m^2 a_0^2 \, \psi _r^{(n)} = \gamma _n \psi _r^{(n)}. \end{aligned}$$
(11.110)

The \(\psi _n(r)\) satisfy orthonormality and completeness relations. The eigenvalues \(\gamma _n\) are given by

$$\begin{aligned} \gamma _n = n^2 - 1 + m^2 a_0^2, \quad n=1,2,3\ldots . \end{aligned}$$
(11.111)

Given the solution of Eq. (11.105), \(a_0\) can be expressed in terms of the cosmological constant and the energy E of the quantized scalar field using Eq. (11.104), since [25]

$$\begin{aligned} E \sim a_0^3 \int \mathrm{d}r\, \sin ^2r \, K_{rr}. \end{aligned}$$
(11.112)

However, \(\int \mathrm{d}r \, \sin ^2r \, K_{rr} \sim \sum _{n} \gamma _n\), which diverges. This is a consequence of the infinite zero-point energy of the quantum field. Therefore, to extract a finite result for \(a_0\) it becomes necessary to introduce renormalization procedures.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hall, M.J.W., Reginatto, M. (2016). Coupling of Quantum Fields to Classical Gravity. In: Ensembles on Configuration Space. Fundamental Theories of Physics, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-34166-8_11

Download citation

Publish with us

Policies and ethics