Advertisement

Ensembles of Classical Gravitational Fields

  • Michael J. W. HallEmail author
  • Marcel Reginatto
Chapter
  • 693 Downloads
Part of the Fundamental Theories of Physics book series (FTPH, volume 184)

Abstract

We define ensembles on configuration space for classical gravitational fields that obey the Einstein equations. Our starting point is the Hamilton–Jacobi formulation of general relativity. After a brief review of the Einstein–Hamilton–Jacobi equation in the metric representation, we introduce the additional mathematical structure that is needed to formulate the theory of configuration space ensembles; i.e., a measure over the space of metrics and a probability functional. Then we define an appropriate ensemble Hamiltonian for the gravitational field, show that it leads to the correct equations, and recover the Einstein equations in the usual formulation. In addition, we show that the formalism of ensembles on configuration space provides a novel approach to solving the reconstruction problem; i.e., the derivation of the full set of Einstein equations from a Hamilton–Jacobi formulation of gravity. Having derived the equations for the general case, we move on to the simpler case of spherical symmetric spacetimes and derive the corresponding equations for midisuperspace models of spherically symmetric gravity. We consider the example of classical ensembles of black holes in this midisuperspace approximation.

Keywords

Black Hole Gravitational Field Configuration Space Jacobi Equation Classical Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)Google Scholar
  2. 2.
    Kiefer, C.: Quantum Gravity. Oxford University Press, Oxford (2012)zbMATHGoogle Scholar
  3. 3.
    Peres, A.: On Cauchy’s problem in general relativity – II. Nuovo Cim. XXVI, pp 53–62 (1962)Google Scholar
  4. 4.
    Gerlach, U.H.: Derivation of the the Einstein equations from the semiclassical approximation to quantum geometrodynamics. Phys. Rev. 177, 1929–1941 (1969)ADSCrossRefGoogle Scholar
  5. 5.
    Bergmann, P.G.: Hamilton-Jacobi and Schrödinger theory in theories with first-class Hamiltonian constraints. Phys. Rev. 144, 1078–1080 (1966)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Giulini, D.: What is the geometry of superspace? Phys. Rev. D. 51, 5630–5635 (1995)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Kiefer, C.: The semiclassical approximation to quantum gravity. In: Ehlers, J., Friedrich, H. (eds.) Canonical gravity: from classical to quantum, pp. 170–212. Springer, Berlin (1994)CrossRefGoogle Scholar
  8. 8.
    Wald, R.: General Relativity. University of Chicago Press, Chicago (1984)CrossRefzbMATHGoogle Scholar
  9. 9.
    Reginatto, M.: Cosmology with quantum matter and a classical gravitational field: the approach of configuration-space ensembles. J. Phys.: Conf. Ser. 442, 012009 (2013)ADSGoogle Scholar
  10. 10.
    DeWitt, B.S.: Quantum gravity: the new synthesis. In: Hawking, S.W., Israel, W. (eds.) General relativity: an Einstein centenary survey, pp. 680–745. Cambridge University Press, Cambridge (1979)Google Scholar
  11. 11.
    Hamber, H.W., Williams, R.M.: On the measure in simplicial gravity. Phys. Rev. D 59, 064014 (1999)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Fadeev, L.D., Popov, V.N.: Covariant quantization of the gravitational field. Sov. Phys.-Usp. 16, 777–788 (1974)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Hall, M.J.W., Reginatto, M.: Interacting classical and quantum ensembles. Phys. Rev. A 72, 062109 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Romano, J.D.: Spherically symmetric scalar field collapse: an example of the spacetime problem of time. arXiv:gr-qc/9501015v1 (1995)
  15. 15.
    Kuchař, K.V.: Geometrodynamics of Schwarzschild black holes. Phys. Rev. D 50, 3961–3981 (1994)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Lau, S.R.: On the canonical reduction of spherically symmetric gravity. Class. Quantum Grav. 13, 1541–1570 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fischler, W., Morgan, D., Polchinski, J.: Quantization of false-vacuum bubbles: a Hamiltonian treatment of gravitational tunneling. Phys. Rev. D 42, 4042–4055 (1990)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Brotz, T., Kiefer, C.: Semiclassical black hole states and entropy. Phys. Rev. D 55, 2186–2191 (1997)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Stephani, H.: General Relativity. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centre for Quantum DynamicsGriffith UniversityBrisbaneAustralia
  2. 2.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations