Skip to main content

Genome Editing in the Retina: A Case Study in CRISPR for a Patient-Specific Autosomal Dominant Retinitis Pigmentosa Model

  • Chapter
  • First Online:
  • 2687 Accesses

Abstract

The future of precision medicine, genome editing has gained momentum in the field of ophthalmology because of the eye’s amenability to genetic interventions. The eye is an ideal target for gene therapy due to its accessibility, ease of noninvasive monitoring, significant compartmentalization, immunoprivileged status, optical transparency, and the presence of a contralateral control. One of the first gene therapy clinical trials was conducted in the eye for a severe form of early-onset retinal dystrophy called Leber congenital amaurosis, and it has encouraged further exploration of this technique as a viable treatment option for other inherited disorders across medical disciplines. This chapter highlights current ocular gene therapy approaches, clinical and preclinical experiments, and provides a case study of the bench-to-bedside personalized medicine approach taken for a novel and rare retinitis pigmentosa mutation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368:1795–809.

    Article  CAS  PubMed  Google Scholar 

  2. Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1:40.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Parmeggiani F. Clinics, epidemiology and genetics of retinitis pigmentosa. Curr Genomics. 2011;12:236–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fahim AT, Daiger SP, Weleber RG. Retinitis pigmentosa overview. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews(R). Seattle: University of Washington; 1993.

    Google Scholar 

  5. Lin MK, Tsai YTT, Tsang SH. Emerging treatments for retinitis pigmentosa: genes and stem cells, as well as new electronic and medical therapies, are gaining ground. Retin Physician. 2015;12:52–70.

    PubMed  PubMed Central  Google Scholar 

  6. Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFranco C, Willett W. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol. 1993;111:761–72.

    Article  CAS  PubMed  Google Scholar 

  7. Wu WH, Tsai YT, Justus S, Lee T, Zhang L, Lin CS, Bassuk AG, Mahajan VB, Tsang SH. CRISPR repair reveals causative mutation in a preclinical model of retinitis pigmentosa. Mol Ther. 2016. In Press.

    Google Scholar 

  8. Bassuk AG, Zheng A, Li Y, Tsang SH, Mahajan VB. Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells. Scientific reports. 2016;6(19969).

    Google Scholar 

  9. Dalkara D, Sahel J-AA. Gene therapy for inherited retinal degenerations. C R Biol. 2014;337:185–92.

    Article  PubMed  Google Scholar 

  10. Boye SE, Boye SL, Lewin AS, Hauswirth WW. A comprehensive review of retinal gene therapy. Mol Ther. 2013;21:509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chaum E, Hatton MP. Gene therapy for genetic and acquired retinal diseases. Surv Ophthalmol. 2002;47:449–69.

    Article  PubMed  Google Scholar 

  12. McClements ME, MacLaren RE. Gene therapy for retinal disease. Transl Res. 2013;161:241–54.

    Article  CAS  PubMed  Google Scholar 

  13. Nash BM, Wright DC, Grigg JR, Bennetts B, Jamieson RV. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy. Transl Pediatr. 2015;4:139–63.

    PubMed  PubMed Central  Google Scholar 

  14. Wert KJ, Skeie JM, Davis RJ, Tsang SH, Mahajan VB. Subretinal injection of gene therapy vectors and stem cells in the perinatal mouse eye. J Vis Exp 2012;69:

    Google Scholar 

  15. Kumar-Singh R, Farber DB. Encapsidated adenovirus mini-chromosome-mediated delivery of genes to the retina: application to the rescue of photoreceptor degeneration. Hum Mol Genet. 1998;7:1893–900.

    Article  CAS  PubMed  Google Scholar 

  16. Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15:445–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wert KJ, Davis RJ, Sancho-Pelluz J, Nishina PM, Tsang SH. Gene therapy provides long-term visual function in a pre-clinical model of retinitis pigmentosa. Hum Mol Genet. 2013;22:558–67.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Wu W-H, Hsu C-W, Nguyen HV, Tsai Y-T, Chan L, Nagasaki T, Maumenee IH, Yannuzzi LA, Hoang QV, Hua H, Egli D, Tsang SH. Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. Mol Ther. 2014;22:1688–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–9.

    Article  CAS  PubMed  Google Scholar 

  20. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ, Pang JJ, Sumaroka A, Windsor EA, Wilson JM, Flotte TR, Fishman GA, Heon E, Stone EM, Byrne BJ, Jacobson SG, Hauswirth WW. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A. 2008;105:15112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell’Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Balaggan KS, Ali RR. Ocular gene delivery using lentiviral vectors. Gene Ther. 2012;19:145–53.

    Article  CAS  PubMed  Google Scholar 

  23. Davis RJ, Hsu CW, Tsai YT, Wert KJ, Sancho-Pelluz J, Lin CS, Tsang SH. Therapeutic margins in a novel preclinical model of retinitis pigmentosa. J Neurosci. 2013;33:13475–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tosi J, Sancho-Pelluz J, Davis RJ, Hsu CW, Wolpert KV, Sengillo JD, Lin C-SS, Tsang SH. Lentivirus-mediated expression of cDNA and shRNA slows degeneration in retinitis pigmentosa. Exp Biol Med (Maywood). 2011;236:1211–7.

    Article  CAS  Google Scholar 

  25. Lewin AS, Hauswirth WW. Ribozyme gene therapy: applications for molecular medicine. Trends Mol Med. 2001;7:221–8.

    Article  CAS  PubMed  Google Scholar 

  26. Sioud M (2006) Ribozymes and siRnas: from structure to preclinical applications. In: Handbook of experimental pharmacology. Springer, Berlin, pp 223–242.

    Google Scholar 

  27. Gorbatyuk M, Justilien V, Liu J, Hauswirth WW, Lewin AS. Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Exp Eye Res. 2007;84:44–52.

    Article  CAS  PubMed  Google Scholar 

  28. Robinson GS, Pierce EA, Rook SL. Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc Natl Acad Sci U S A. 1996;93:4851–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsang SH, Chen J, Kjeldbye H, Li WS, Simon MI, Gouras P, Goff SP. Retarding photoreceptor degeneration in Pdegtm1/Pdegtml mice by an apoptosis suppressor gene. Invest Ophthalmol Vis Sci. 1997;38:943–50.

    CAS  PubMed  Google Scholar 

  30. Simon PD, Vorwerk CK, Mansukani SS, Chen SJ, Wilson JM, Zurakowski D, Bennett J, Dreyer EB. bcl-2 gene therapy exacerbates excitotoxicity. Hum Gene Ther. 1999;10:1715–20.

    Article  CAS  PubMed  Google Scholar 

  31. Gilles AF, Averof M. Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. EvoDevo. 2014;5:43.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Carroll D. Genome engineering with targetable nucleases. Annu Rev Biochem. 2014;83:409–39.

    Article  CAS  PubMed  Google Scholar 

  33. Cong L, Ran AF, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Greenwald DL, Cashman SM, Kumar-Singh R. Engineered zinc finger nuclease-mediated homologous recombination of the human rhodopsin gene. Invest Ophthalmol Vis Sci. 2010;51:6374–80.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Overlack N, Goldmann T, Wolfrum U, Nagel-Wolfrum K. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination. Invest Ophthalmol Vis Sci. 2012;53:4140–6.

    Article  CAS  PubMed  Google Scholar 

  36. Liu F, Chen J, Yu S, Raghupathy RK. Knockout of RP2 decreases GRK1 and rod transducin subunits and leads to photoreceptor degeneration in zebrafish. Hum Mol Genet. 2015;24:4648–59.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma R, Rajan V, Wan Q. Engineering isogenic best vitelliform macular dystrophy patient iPS cell lines using TALEN technology. Invest Ophthalmol Vis Sci. 2014;55:3987.

    Article  Google Scholar 

  38. Low BE, Krebs MP, Joung JK, Tsai SQ. Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN-mediated homology-directed repair. Invest Ophthalmol Vis Sci. 2014;55:387–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sander JD, Joung KJ. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Senís E, Fatouros C, Große S, Wiedtke E, Niopek D, Mueller AK, Börner K, Grimm D. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol J. 2014;9:1402–12.

    Article  PubMed  Google Scholar 

  41. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article  CAS  PubMed  Google Scholar 

  42. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

    Article  PubMed  Google Scholar 

  43. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep. 2014;4:5400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. 2014;11:399–402.

    Article  CAS  PubMed  Google Scholar 

  47. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sancho-Pelluz J, Tosi J, Hsu C-WW, Lee F, Wolpert K, Tabacaru MR, Greenberg JP, Tsang SH, Lin C-SS. Mice with a D190N mutation in the gene encoding rhodopsin: a model for human autosomal-dominant retinitis pigmentosa. Mol Med. 2012;18:549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding/Support: V.B.M. is supported by the National Institutes of Health [K08EY020530, R01EY016822, R01EY024665, R01EY025225, R01EY024698 and R21AG050437], Doris Duke Charitable Foundation Grant #2013103, and Research to Prevent Blindness, New York, NY. G.V. is supported by the NIH [T32GM007337]. The Barbara & Donald Jonas Laboratory of Regenerative Medicine is supported by the National Institute of Health Core [5P30EY019007], National Cancer Institute Core [5P30CA013696], unrestricted funds from Research to Prevent Blindness (RPB), New York, NY, USA. S.H.T. is a member of the RD-CURE Consortium and is supported by the Tistou and Charlotte Kerstan Foundation, the National Institute of Health [R01EY018213], the Research to Prevent Blindness Physician-Scientist Award, Association for Research in Vision and Ophthalmology (ARVO) Foundation, Macula Society, the Schneeweiss Stem Cell Fund, New York State [C029572], the Foundation Fighting Blindness New York Regional Research Center Grant [C-NY05-0705-0312], the Joel Hoffman Fund, the Professor Gertrude Rothschild Stem Cell Foundation, and the Gebroe Family Foundation. V.B.M. is supported by the National Institutes of Health [K08EY020530, R01EY016822], Doris Duke Charitable Foundation Grant #2013103, and Research to Prevent Blindness, New York, NY. G.V. is supported by the NIH [T32GM007337].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Tsang M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Justus, S. et al. (2016). Genome Editing in the Retina: A Case Study in CRISPR for a Patient-Specific Autosomal Dominant Retinitis Pigmentosa Model. In: Turksen, K. (eds) Genome Editing. Springer, Cham. https://doi.org/10.1007/978-3-319-34148-4_9

Download citation

Publish with us

Policies and ethics