Skip to main content

Genome Editing with Targetable Nucleases

  • Chapter
  • First Online:
Genome Editing
  • 2995 Accesses

Abstract

For decades, genome engineering relied on techniques that took years to master, required the generation of large and often complex DNA constructs containing selection markers, and could be applied to only a few organisms. However, the ease and efficiency of current technologies to edit genomes are unprecedented. With the advent of targetable nucleases, most notably the CRISPR-Cas9 technology, genomes of all species are now easily accessible to modifications. This advance has provided countless opportunities not only to further our understanding of gene functions and disease mechanisms but also to correct disease-causing mutations, modify crops and livestock, and perhaps modify our environment. This chapter discusses the advances in genome-editing technologies and their current and future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bollag RJ, Waldman AS, Liskay RM. Homologous recombination in mammalian cells. Annu Rev Genet. 1989;23:199–225.

    Article  CAS  PubMed  Google Scholar 

  2. Cohen-Tannoudji M, Robine S, Choulika A, Pinto D, El Marjou F, Babinet C, et al. I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol Cell Biol. 1998;18(3):1444–8. Pubmed Central PMCID: 108858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Donoho G, Jasin M, Berg P. Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol Cell Biol. 1998;18(7):4070–8. Pubmed Central PMCID: 108991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gloor GB, Nassif NA, Johnson-Schlitz DM, Preston CR, Engels WR. Targeted gene replacement in Drosophila via P element-induced gap repair. Science. 1991;253(5024):1110–7.

    Article  CAS  PubMed  Google Scholar 

  5. Smih F, Rouet P, Romanienko PJ, Jasin M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 1995;23(24):5012–9. Pubmed Central PMCID: 307507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choulika A, Perrin A, Dujon B, Nicolas JF. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol. 1995;15(4):1968–73. Pubmed Central PMCID: 230423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93(3):1156–60. Pubmed Central PMCID: 40048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 2000;28(17):3361–9. Pubmed Central PMCID: 110700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol. 2001;21(1):289–97. Pubmed Central PMCID: 88802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berg JM. Potential metal-binding domains in nucleic acid binding proteins. Science. 1986;232(4749):485–7.

    Article  CAS  PubMed  Google Scholar 

  11. Nwankwo D, Wilson G. Cloning of two type II methylase genes that recognise asymmetric nucleotide sequences: FokI and HgaI. Mol Gen Genet. 1987;209(3):570–4.

    Article  CAS  PubMed  Google Scholar 

  12. Looney MC, Moran LS, Jack WE, Feehery GR, Benner JS, Slatko BE, et al. Nucleotide sequence of the FokI restriction-modification system: separate strand-specificity domains in the methyltransferase. Gene. 1989;80(2):193–208.

    Article  CAS  PubMed  Google Scholar 

  13. Kita K, Kotani H, Sugisaki H, Takanami M. The FokI restriction-modification system. I. Organization and nucleotide sequences of the restriction and modification genes. J Biol Chem. 1989;264(10):5751–6.

    CAS  PubMed  Google Scholar 

  14. Li L, Wu LP, Chandrasegaran S. Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci U S A. 1992;89(10):4275–9. Pubmed Central PMCID: 49064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science. 2003;300(5620):5764.

    Article  Google Scholar 

  16. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46.

    Article  CAS  PubMed  Google Scholar 

  17. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186(2):757–61. Pubmed Central PMCID: 2942870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, et al. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 2011;39(1):359–72. Pubmed Central PMCID: 3017587.

    Article  PubMed  CAS  Google Scholar 

  19. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  20. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  PubMed  Google Scholar 

  21. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6. Pubmed Central PMCID: 3712628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. eLife. 2013;2, e00471. Pubmed Central PMCID: 3557905.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell. 2015;163:759–71.

    Article  CAS  PubMed  Google Scholar 

  24. Li L, Wu LP, Clarke R, Chandrasegaran S. C-terminal deletion mutants of the FokI restriction endonuclease. Gene. 1993;133(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  25. Li L, Chandrasegaran S. Alteration of the cleavage distance of Fok I restriction endonuclease by insertion mutagenesis. Proc Natl Acad Sci U S A. 1993;90(7):2764–8. Pubmed Central PMCID: 46176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim YG, Li L, Chandrasegaran S. Insertion and deletion mutants of FokI restriction endonuclease. J Biol Chem. 1994;269(50):31978–82.

    CAS  PubMed  Google Scholar 

  27. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014;32(6):569–76. Pubmed Central PMCID: 4090141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985;4(6):1609–14. Pubmed Central PMCID: 554390.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown RS, Sander C, Argos P. The primary structure of transcription factor TFIIIA has 12 consecutive repeats. FEBS Lett. 1985;186(2):271–4.

    Article  CAS  PubMed  Google Scholar 

  30. Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991;252(5007):5809–17.

    Article  Google Scholar 

  31. Berg JM. Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. Proc Natl Acad Sci U S A. 1988;85(1):99–102. Pubmed Central PMCID: 279490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Handel EM, Alwin S, Cathomen T. Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol Ther. 2009;17(1):104–11. Pubmed Central PMCID: 2834978.

    Article  PubMed  CAS  Google Scholar 

  33. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435(7042):646–51.

    Article  CAS  PubMed  Google Scholar 

  34. Shimizu Y, Bhakta MS, Segal DJ. Restricted spacer tolerance of a zinc finger nuclease with a six amino acid linker. Bioorg Med Chem Lett. 2009;19(14):3970–2. Pubmed Central PMCID: 2709702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu PQ, Rebar EJ, Zhang L, Liu Q, Jamieson AC, Liang Y, et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J Biol Chem. 2001;276(14):11323–34.

    Article  CAS  PubMed  Google Scholar 

  36. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 2008;31(2):294–301. Pubmed Central PMCID: 2535758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beerli RR, Barbas III CF. Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol. 2002;20(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  38. Bae KH, Kwon YD, Shin HC, Hwang MS, Ryu EH, Park KS, et al. Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol. 2003;21(3):275–80.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Q, Xia Z, Zhong X, Case CC. Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem. 2002;277(6):3850–6.

    Article  CAS  PubMed  Google Scholar 

  40. Mandell JG, Barbas CF III (2006) Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 2006;34(Web Server issue):W516–W523

    Google Scholar 

  41. Segal DJ, Beerli RR, Blancafort P, Dreier B, Effertz K, Huber A, et al. Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry. 2003;42(7):2137–48.

    Article  CAS  PubMed  Google Scholar 

  42. Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI, et al. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. 2008;5(5):374–5.

    Article  CAS  PubMed  Google Scholar 

  43. Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung JK, et al. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther. 2008;16(2):352–8.

    Article  CAS  PubMed  Google Scholar 

  44. Pruett-Miller SM, Connelly JP, Maeder ML, Joung JK, Porteus MH. Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Mol Ther. 2008;16(4):707–17.

    Article  CAS  PubMed  Google Scholar 

  45. Gupta A, Christensen RG, Rayla AL, Lakshmanan A, Stormo GD, Wolfe SA. An optimized two-finger archive for ZFN-mediated gene targeting. Nat Methods. 2012;9(6):588–90. Pubmed Central PMCID: 3443678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods. 2011;8(1):67–9. Pubmed Central PMCID: 3018472.

    Article  CAS  PubMed  Google Scholar 

  47. Zhu C, Gupta A, Hall VL, Rayla AL, Christensen RG, Dake B, et al. Using defined finger-finger interfaces as units of assembly for constructing zinc-finger nucleases. Nucleic Acids Res. 2013;41(4):2455–65. Pubmed Central PMCID: 3575815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moore M, Klug A, Choo Y. Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger units. Proc Natl Acad Sci U S A. 2001;98(4):1437–41. Pubmed Central PMCID: 29275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moore M, Choo Y, Klug A. Design of polyzinc finger peptides with structured linkers. Proc Natl Acad Sci U S A. 2001;98(4):1432–6. Pubmed Central PMCID: 29274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Greisman HA, Pabo CO. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science. 1997;275(5300):657–61.

    Article  CAS  PubMed  Google Scholar 

  51. Hurt JA, Thibodeau SA, Hirsh AS, Pabo CO, Joung JK. Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci U S A. 2003;100(21):12271–6. Pubmed Central PMCID: 218748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol. 2010;48:419–36.

    Article  CAS  PubMed  Google Scholar 

  53. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326(5959):1501.

    Article  CAS  PubMed  Google Scholar 

  54. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509–12.

    Article  CAS  PubMed  Google Scholar 

  55. Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science. 2012;335(6069):716–9. Pubmed Central PMCID: 3427646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science. 2012;335(6069):720–3. Pubmed Central PMCID: 3586824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Christian ML, Demorest ZL, Starker CG, Osborn MJ, Nyquist MD, Zhang Y, et al. Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One. 2012;7(9), e45383. Pubmed Central PMCID: 3454392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun. 2012;3:968. Pubmed Central PMCID: 3556390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Streubel J, Blucher C, Landgraf A, Boch J. TAL effector RVD specificities and efficiencies. Nat Biotechnol. 2012;30(7):593–5.

    Article  CAS  PubMed  Google Scholar 

  60. Meckler JF, Bhakta MS, Kim MS, Ovadia R, Habrian CH, Zykovich A, et al. Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res. 2013;41(7):4118–28. Pubmed Central PMCID: 3627578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. 2011;29(8):699–700.

    Article  PubMed  CAS  Google Scholar 

  62. Bultmann S, Morbitzer R, Schmidt CS, Thanisch K, Spada F, Elsaesser J, et al. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res. 2012;40(12):5368–77. Pubmed Central PMCID: 3384321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Valton J, Dupuy A, Daboussi F, Thomas S, Marechal A, Macmaster R, et al. Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem. 2012;287(46):38427–32. Pubmed Central PMCID: 3493886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol. 2012;30(5):460–5. Pubmed Central PMCID: 3558947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, et al. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res. 2012;40(15), e117. Pubmed Central PMCID: 3424587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39(12), e82. Pubmed Central PMCID: 3130291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmid-Burgk JL, Schmidt T, Kaiser V, Honing K, Hornung V. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol. 2013;31(1):76–81. Pubmed Central PMCID: 4142318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Westra ER, Swarts DC, Staals RH, Jore MM, Brouns SJ, van der Oost J. The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity. Annu Rev Genet. 2012;46:311–39.

    Article  CAS  PubMed  Google Scholar 

  69. Makarova KS, Koonin EV. Annotation and classification of CRISPR-Cas systems. Methods Mol Biol. 2015;1311:47–75.

    Article  PubMed  Google Scholar 

  70. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9(6):467–77. Pubmed Central PMCID: 3380444.

    Article  CAS  PubMed  Google Scholar 

  71. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71.

    Article  CAS  PubMed  Google Scholar 

  72. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 2009;155(Pt 3):733–40.

    Article  CAS  PubMed  Google Scholar 

  73. Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190(4):1390–400. Pubmed Central PMCID: 2238228.

    Article  CAS  PubMed  Google Scholar 

  74. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827–32. Pubmed Central PMCID: 3969858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. 2013;10(11):1116–21. Pubmed Central PMCID: 3844869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lecrivain AL, Bzdrenga J, et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 2014;42(4):2577–90. Pubmed Central PMCID: 3936727.

    Article  CAS  PubMed  Google Scholar 

  77. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. 2013;110(39):15644–9. Pubmed Central PMCID: 3785731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell. 2013;50(4):488–503. Pubmed Central PMCID: 3694421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van der Ploeg JR. Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages. Microbiology. 2009;155(Pt 6):1966–76.

    Article  PubMed  CAS  Google Scholar 

  80. Horvath P, Romero DA, Coute-Monvoisin AC, Richards M, Deveau H, Moineau S, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol. 2008;190(4):1401–12. Pubmed Central PMCID: 2238196.

    Article  CAS  PubMed  Google Scholar 

  81. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481–5. Pubmed Central PMCID: 4540238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–7. Pubmed Central PMCID: 4089965.

    Article  CAS  PubMed  Google Scholar 

  83. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783–4. Pubmed Central PMCID: 4486245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014;343(6166):80–4. Pubmed Central PMCID: 3972032.

    Article  CAS  PubMed  Google Scholar 

  85. Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 2014;32(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  86. Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature. 2014;509(7501):487–91.

    Article  CAS  PubMed  Google Scholar 

  87. Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, Ye CJ, et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell. 2015;16:675–86.

    Article  CAS  Google Scholar 

  88. Ma H, Dang Y, Wu Y, Jia G, Anaya E, Zhang J, et al. A CRISPR-based screen identifies genes essential for West-Nile-virus-induced cell death. Cell Rep. 2015;28:673–83.

    Article  CAS  Google Scholar 

  89. Bassett AR, Kong L, Liu JL. A genome-wide CRISPR library for high-throughput genetic screening in Drosophila cells. J Genet Genomics. 2015;42(6):301–9.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2015;160(6):1246–60. Pubmed Central PMCID: 4380877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chari R, Mali P, Moosburner M, Church GM. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods. 2015;12:823–6.

    Article  CAS  PubMed  Google Scholar 

  92. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. Pubmed Central PMCID: 3795411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822–6. Pubmed Central PMCID: 3773023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013;31(3):233–9. Pubmed Central PMCID: 3748948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 2014;42(11):7473–85. Pubmed Central PMCID: 4066799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol. 2014;32(12):1262–7. Pubmed Central PMCID: 4262738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gagnon JA, Valen E, Thyme SB, Huang P, Akhmetova L, Pauli A, et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One. 2014;9(5), e98186. Pubmed Central PMCID: 4038517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q, et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 2015;25(8):1147–57. Pubmed Central PMCID: 4509999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pelletier S, Gingras S, Green DR. Mouse genome engineering via CRISPR-Cas9 for study of immune function. Immunity. 2015;42(1):18–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3):279–84. Pubmed Central PMCID: 3988262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Martinez J, Malireddi RK, Lu Q, Cunha LD, Pelletier S, Gingras S, et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol. 2015;17(7):893–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.

    Article  CAS  PubMed  Google Scholar 

  103. Pattanayak V, Ramirez CL, Joung JK, Liu DR. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. 2011;8(9):765–70. Pubmed Central PMCID: 3164905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 2011;29(9):816–23.

    Article  CAS  PubMed  Google Scholar 

  105. Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He C, et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell. 2014;15(1):12–3. Pubmed Central PMCID: 4338993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Iyer V, Shen B, Zhang W, Hodgkins A, Keane T, Huang X, et al. Off-target mutations are rare in Cas9-modified mice. Nat Methods. 2015;12(6):479.

    Article  CAS  PubMed  Google Scholar 

  107. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370–9. Pubmed Central PMCID: 3961003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Veres A, Gosis BS, Ding Q, Collins R, Ragavendran A, Brand H, et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell. 2014;15(1):27–30. Pubmed Central PMCID: 4082799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910–8. Pubmed Central PMCID: 3969854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. 2007;25(7):778–85.

    Article  CAS  PubMed  Google Scholar 

  111. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013;31(9):833–8. Pubmed Central PMCID: 3818127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9. Pubmed Central PMCID: 3856256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fu Y, Reyon D, Joung JK. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs. Methods Enzymol. 2014;546:21–45.

    Article  PubMed  Google Scholar 

  114. Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. 2014;32(6):577–82. Pubmed Central PMCID: 4263420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47(4):497–510.

    Article  CAS  PubMed  Google Scholar 

  116. Chang YF, Imam JS, Wilkinson MF. The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem. 2007;76:51–74.

    Article  CAS  PubMed  Google Scholar 

  117. Yang H, Wang H, Jaenisch R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc. 2014;9(8):1956–68.

    Article  CAS  PubMed  Google Scholar 

  118. Orlando SJ, Santiago Y, DeKelver RC, Freyvert Y, Boydston EA, Moehle EA, et al. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. 2010;38(15), e152. Pubmed Central PMCID: 2926620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Cai CQ, Doyon Y, Ainley WM, Miller JC, Dekelver RC, Moehle EA, et al. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol. 2009;69(6):699–709.

    Article  CAS  PubMed  Google Scholar 

  120. Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A. 2007;104(9):3055–60. Pubmed Central PMCID: 1802009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29(8):731–4. Pubmed Central PMCID: 3152587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell. 2010;140(5):678–91. Pubmed Central PMCID: 2885838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics. 2006;172(4):2391–403. Pubmed Central PMCID: 1456366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, et al. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A. 2012;109(43):17382–7. Pubmed Central PMCID: 3491456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ma S, Zhang S, Wang F, Liu Y, Liu Y, Xu H, et al. Highly efficient and specific genome editing in silkworm using custom TALENs. PLoS One. 2012;7(9), e45035. Pubmed Central PMCID: 3445556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu PQ, Chan EM, Cost GJ, Zhang L, Wang J, Miller JC, et al. Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotechnol Bioeng. 2010;106(1):97–105.

    CAS  PubMed  Google Scholar 

  127. Kim S, Lee HJ, Kim E, Kim JS. Analysis of targeted chromosomal deletions induced by zinc finger nucleases. Cold Spring Harbor Protoc 2010;2010(8):pdb prot5477.

    Google Scholar 

  128. Lee HJ, Kim E, Kim JS. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 2010;20(1):81–9. Pubmed Central PMCID: 2798833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Petolino JF, Worden A, Curlee K, Connell J, Strange Moynahan TL, Larsen C, et al. Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol. 2010;73(6):617–28.

    Article  CAS  PubMed  Google Scholar 

  130. Blasco RB, Karaca E, Ambrogio C, Cheong TC, Karayol E, Minero VG, et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 2014;9(4):1219–27.

    Article  CAS  PubMed  Google Scholar 

  131. Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014;516(7531):423–7. Pubmed Central PMCID: 4270925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ghezraoui H, Piganeau M, Renouf B, Renaud JB, Sallmyr A, Ruis B, et al. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell. 2014;55(6):829–42. Pubmed Central PMCID: 4398060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Choi PS, Meyerson M. Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun. 2014;5:3728. Pubmed Central PMCID: 4170920.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Torres R, Martin MC, Garcia A, Cigudosa JC, Ramirez JC, Rodriguez-Perales S. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun. 2014;5:3964.

    Article  CAS  PubMed  Google Scholar 

  135. Piganeau M, Ghezraoui H, De Cian A, Guittat L, Tomishima M, Perrouault L, et al. Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res. 2013;23(7):1182–93. Pubmed Central PMCID: 3698511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Do TU, Ho B, Shih SJ, Vaughan A. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL. Mutat Res. 2012;740(1-2):34–42. Pubmed Central PMCID: 3578303.

    Article  CAS  PubMed  Google Scholar 

  137. Van Deursen J, Fornerod M, Van Rees B, Grosveld G. Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. Proc Natl Acad Sci U S A. 1995;92(16):7376–80. Pubmed Central PMCID: 41342.

    Article  PubMed  PubMed Central  Google Scholar 

  138. DeKelver RC, Choi VM, Moehle EA, Paschon DE, Hockemeyer D, Meijsing SH, et al. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res. 2010;20(8):1133–42. Pubmed Central PMCID: 2909576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Luo Y, Rao M, Zou J. Generation of GFP reporter human induced pluripotent stem cells using AAVS1 safe harbor transcription activator-like effector nuclease. Curr Protoc Stem Cell Biol. 2014;29:5A 71–5A 718. Pubmed Central PMCID: 4128243.

    Google Scholar 

  140. Tiyaboonchai A, Mac H, Shamsedeen R, Mills JA, Kishore S, French DL, et al. Utilization of the AAVS1 safe harbor locus for hematopoietic specific transgene expression and gene knockdown in human ES cells. Stem Cell Res. 2014;12(3):630–7. Pubmed Central PMCID: 4048956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015;33(5):543–8.

    Article  CAS  PubMed  Google Scholar 

  142. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33(5):538–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Singh P, Schimenti JC, Bolcun-Filas E. A mouse geneticist’s practical guide to CRISPR applications. Genetics. 2015;199(1):1–15. Pubmed Central PMCID: 4286675.

    Article  CAS  PubMed  Google Scholar 

  144. Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife. 2014;3, e04766. Pubmed Central PMCID: 4383097.

    PubMed  PubMed Central  Google Scholar 

  145. Liu J, Gaj T, Patterson JT, Sirk SJ, Barbas III CF. Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One. 2014;9(1), e85755. Pubmed Central PMCID: 3896395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Ru R, Yao Y, Yu S, Yin B, Xu W, Zhao S, et al. Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs. Cell Regen. 2013;2(1):5. Pubmed Central PMCID: 4230761.

    Article  CAS  Google Scholar 

  147. Chen Z, Jaafar L, Agyekum DG, Xiao H, Wade MF, Kumaran RI, et al. Receptor-mediated delivery of engineered nucleases for genome modification. Nucleic Acids Res. 2013;41(19), e182. Pubmed Central PMCID: 3799454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 2014;24(6):1020–7. Pubmed Central PMCID: 4032848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gaj T, Guo J, Kato Y, Sirk SJ, Barbas III CF. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods. 2012;9(8):805–7. Pubmed Central PMCID: 3424280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24(6):1012–9. Pubmed Central PMCID: 4032847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73–80. Pubmed Central PMCID: 4289409.

    Article  CAS  PubMed  Google Scholar 

  152. Sahin U, Kariko K, Tureci O. mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80.

    Article  CAS  PubMed  Google Scholar 

  153. Genovese P, Schiroli G, Escobar G, Di Tomaso T, Firrito C, Calabria A, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature. 2014;510(7504):235–40. Pubmed Central PMCID: 4082311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007;25(11):1298–306.

    Article  CAS  PubMed  Google Scholar 

  155. Provasi E, Genovese P, Lombardo A, Magnani Z, Liu PQ, Reik A, et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med. 2012;18(5):807–15.

    Article  CAS  PubMed  Google Scholar 

  156. Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013;41(5), e63. Pubmed Central PMCID: 3597656.

    Article  CAS  PubMed  Google Scholar 

  157. Yang L, Guell M, Byrne S, Yang JL, De Los Angeles A, Mali P, et al. Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 2013;41(19):9049–61. Pubmed Central PMCID: 3799423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mock U, Riecken K, Berdien B, Qasim W, Chan E, Cathomen T, et al. Novel lentiviral vectors with mutated reverse transcriptase for mRNA delivery of TALE nucleases. Sci Rep. 2014;4:6409. Pubmed Central PMCID: 4166709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lei Y, Lee CL, Joo KI, Zarzar J, Liu Y, Dai B, et al. Gene editing of human embryonic stem cells via an engineered baculoviral vector carrying zinc-finger nucleases. Mol Ther. 2011;19(5):942–50. Pubmed Central PMCID: 3098635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Phang RZ, Tay FC, Goh SL, Lau CH, Zhu H, Tan WK, et al. Zinc finger nuclease-expressing baculoviral vectors mediate targeted genome integration of reprogramming factor genes to facilitate the generation of human induced pluripotent stem cells. Stem Cells Transl Med. 2013;2(12):935–45. Pubmed Central PMCID: 3841088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tay FC, Tan WK, Goh SL, Ramachandra CJ, Lau CH, Zhu H, et al. Targeted transgene insertion into the AAVS1 locus driven by baculoviral vector-mediated zinc finger nuclease expression in human-induced pluripotent stem cells. J Gene Med. 2013;15(10):384–95.

    Article  CAS  PubMed  Google Scholar 

  162. Zhu H, Lau CH, Goh SL, Liang Q, Chen C, Du S, et al. Baculoviral transduction facilitates TALEN-mediated targeted transgene integration and Cre/LoxP cassette exchange in human-induced pluripotent stem cells. Nucleic Acids Res. 2013;41(19), e180. Pubmed Central PMCID: 3799456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lau CH, Zhu H, Tay JC, Li Z, Tay FC, Chen C, et al. Genetic rearrangements of variable di-residue (RVD)-containing repeat arrays in a baculoviral TALEN system. Mol Ther Methods Clin Dev. 2014;1:14050. Pubmed Central PMCID: 4362386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Wirth T, Parker N, Yla-Herttuala S. History of gene therapy. Gene. 2013;525(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  165. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–10. Pubmed Central PMCID: 4084652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Coluccio A, Miselli F, Lombardo A, Marconi A, Malagoli Tagliazucchi G, Goncalves MA, et al. Targeted gene addition in human epithelial stem cells by zinc-finger nuclease-mediated homologous recombination. Mol Ther. 2013;21(9):1695–704. Pubmed Central PMCID: 3776632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26(7):808–16. Pubmed Central PMCID: 3422503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Holkers M, Maggio I, Henriques SF, Janssen JM, Cathomen T, Goncalves MA. Adenoviral vector DNA for accurate genome editing with engineered nucleases. Nat Methods. 2014;11(10):1051–7.

    Article  CAS  PubMed  Google Scholar 

  169. Maggio I, Holkers M, Liu J, Janssen JM, Chen X, Goncalves MA. Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci Rep. 2014;4:5105. Pubmed Central PMCID: 4037712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Holkers M, Cathomen T, Goncalves MA. Construction and characterization of adenoviral vectors for the delivery of TALENs into human cells. Methods. 2014;69(2):179–87.

    Article  CAS  PubMed  Google Scholar 

  171. Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15(7):445–51. Pubmed Central PMCID: 4393649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ellis BL, Hirsch ML, Porter SN, Samulski RJ, Porteus MH. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs. Gene Ther. 2013;20(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  173. Asuri P, Bartel MA, Vazin T, Jang JH, Wong TB, Schaffer DV. Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells. Mol Ther. 2012;20(2):329–38. Pubmed Central PMCID: 3277219.

    Article  CAS  PubMed  Google Scholar 

  174. Handel EM, Gellhaus K, Khan K, Bednarski C, Cornu TI, Muller-Lerch F, et al. Versatile and efficient genome editing in human cells by combining zinc-finger nucleases with adeno-associated viral vectors. Hum Gene Ther. 2012;23(3):321–9. Pubmed Central PMCID: 3300077.

    Article  PubMed  CAS  Google Scholar 

  175. Howes R, Schofield C. Genome engineering using Adeno-Associated Virus (AAV). Methods Mol Biol. 2015;1239:75–103.

    Article  CAS  PubMed  Google Scholar 

  176. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159(2):440–55. Pubmed Central PMCID: 4265475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Senis E, Fatouros C, Grosse S, Wiedtke E, Niopek D, Mueller AK, et al. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol J. 2014;9(11):1402–12.

    Article  CAS  PubMed  Google Scholar 

  178. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41(7):4336–43. Pubmed Central PMCID: 3627607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 2011;39(14):6315–25. Pubmed Central PMCID: 3152341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Morton J, Davis MW, Jorgensen EM, Carroll D. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci U S A. 2006;103(44):16370–5. Pubmed Central PMCID: 1637589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods. 2013;10(8):741–3. Pubmed Central PMCID: 3822328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, et al. Targeted genome editing across species using ZFNs and TALENs. Science. 2011;333(6040):307. Pubmed Central PMCID: 3489282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liu J, Li C, Yu Z, Huang P, Wu H, Wei C, et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics. 2012;39(5):209–15.

    Article  CAS  PubMed  Google Scholar 

  184. Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 2002;161(3):1169–75. Pubmed Central PMCID: 1462166.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Bassett AR, Tibbit C, Ponting CP, Liu JL. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 2013;4(1):220–8. Pubmed Central PMCID: 3714591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD, et al. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One. 2013;8(7), e68708. Pubmed Central PMCID: 3706373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31(3):227–9. Pubmed Central PMCID: 3686313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol. 2011;29(8):697–8. Pubmed Central PMCID: 3154023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. 2008;26(6):702–8. Pubmed Central PMCID: 2674762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. 2008;26(6):695–701. Pubmed Central PMCID: 2502069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH, et al. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A. 2011;108(17):7052–7. Pubmed Central PMCID: 3084115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. 2012;109(43):17484–9. Pubmed Central PMCID: 3491516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Blitz IL, Biesinger J, Xie X, Cho KW. Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis. 2013;51(12):827–34. Pubmed Central PMCID: 4039559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis. 2013;51(12):835–43. Pubmed Central PMCID: 3947545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, et al. Targeted genome modification in mice using zinc-finger nucleases. Genetics. 2010;186(2):451–9. Pubmed Central PMCID: 2954478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Meyer M, de Angelis MH, Wurst W, Kuhn R. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A. 2010;107(34):15022–6. Pubmed Central PMCID: 2930558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Qiu Z, Liu M, Chen Z, Shao Y, Pan H, Wei G, et al. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Res. 2013;41(11), e120. Pubmed Central PMCID: 3675477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wefers B, Panda SK, Ortiz O, Brandl C, Hensler S, Hansen J, et al. Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nat Protoc. 2013;8(12):2355–79.

    Article  CAS  PubMed  Google Scholar 

  199. Wefers B, Meyer M, Ortiz O, Hrabe de Angelis M, Hansen J, Wurst W, et al. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proc Natl Acad Sci U S A. 2013;110(10):3782–7. Pubmed Central PMCID: 3593923.

    Google Scholar 

  200. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009;325(5939):433. Pubmed Central PMCID: 2831805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, et al. Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. 2011;29(8):695–6.

    Article  CAS  PubMed  Google Scholar 

  202. Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol. 2013;31(8):684–6.

    Article  CAS  PubMed  Google Scholar 

  203. Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol. 2013;31(8):681–3.

    Article  CAS  PubMed  Google Scholar 

  204. Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One. 2011;6(6), e21045. Pubmed Central PMCID: 3113902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Song J, Zhong J, Guo X, Chen Y, Zou Q, Huang J, et al. Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res. 2013;23(8):1059–62. Pubmed Central PMCID: 3731565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Yan Q, Zhang Q, Yang H, Zou Q, Tang C, Fan N, et al. Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell Regen. 2014;3(1):12. Pubmed Central PMCID: 4230364.

    Article  CAS  Google Scholar 

  207. Honda A, Hirose M, Sankai T, Yasmin L, Yuzawa K, Honsho K, et al. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9. Exp Anim. 2015;64(1):31–7. Pubmed Central PMCID: 4329513.

    Article  CAS  PubMed  Google Scholar 

  208. Chen Y, Zheng Y, Kang Y, Yang W, Niu Y, Guo X, et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet. 2015;24(13):3764–74.

    CAS  PubMed  Google Scholar 

  209. Wan H, Feng C, Teng F, Yang S, Hu B, Niu Y, et al. One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res. 2015;25(2):258–61.

    Article  CAS  PubMed  Google Scholar 

  210. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156(4):836–43.

    Article  CAS  PubMed  Google Scholar 

  211. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A. 2010;107(26):12028–33. Pubmed Central PMCID: 2900673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 2009;459(7245):437–41.

    Article  CAS  PubMed  Google Scholar 

  213. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature. 2009;459(7245):442–5. Pubmed Central PMCID: 2743854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Li T, Liu B, Spalding MH, Weeks DP, Yang B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol. 2012;30(5):390–2.

    Article  CAS  PubMed  Google Scholar 

  215. Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One. 2014;9(4), e93806. Pubmed Central PMCID: 3977896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Nodvig CS, Nielsen JB, Kogle ME, Mortensen UH. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One. 2015;10(7), e0133085. Pubmed Central PMCID: 4503723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Arazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, et al. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng. 2015;112:2543–9.

    Article  CAS  PubMed  Google Scholar 

  218. Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J, et al. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci U S A. 2015;112(13):E1530–9. Pubmed Central PMCID: 4386332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, et al. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A. 2013;110(41):16526–31. Pubmed Central PMCID: 3799378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, et al. Genome edited sheep and cattle. Transgenic Res. 2015;24(1):147–53. Pubmed Central PMCID: 4274373.

    Article  CAS  PubMed  Google Scholar 

  221. Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C, et al. Live pigs produced from genome edited zygotes. Sci Rep. 2013;3:2847.

    Article  PubMed  Google Scholar 

  222. Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation. 2015;22(3):194–202. Pubmed Central PMCID: 4464961.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Li P, Estrada JL, Burlak C, Montgomery J, Butler JR, Santos RM, et al. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation. 2015;22(1):20–31.

    Article  CAS  PubMed  Google Scholar 

  224. Kang JT, Kwon DK, Park AR, Lee EJ, Yun YJ, Ji DY, et al. Production of GGTA1 targeted pigs using TALEN-mediated genome editing technology. J Vet Sci. 2016;17(1):89–96. PMCID: 4808648.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Xin J, Yang H, Fan N, Zhao B, Ouyang Z, Liu Z, et al. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One. 2013;8(12), e84250. Pubmed Central PMCID: 3866186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Prather RS, Lorson M, Ross JW, Whyte JJ, Walters E. Genetically engineered pig models for human diseases. Annu Rev Anim Biosci. 2013;1:203–19. Pubmed Central PMCID: 4460601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, et al. Generation of mastitis resistance in cows by targeting human lysozyme gene to beta-casein locus using zinc-finger nucleases. Proc Biol Sci. 2014;281(1780):20133368. Pubmed Central PMCID: 4027401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, Dos Santos-Neto PC, et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One. 2015;10(8), e0136690. Pubmed Central PMCID: 4549068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells. 2011;29(11):1717–26. Pubmed Central PMCID: 3285772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C, Kleanthous M, et al. Recent trends in the gene therapy of beta-thalassemia. J Blood Med. 2015;6:69–85. Pubmed Central PMCID: 4342371.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Huang X, Wang Y, Yan W, Smith C, Ye Z, Wang J, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells. 2015;33(5):1470–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475(7355):217–21. Pubmed Central PMCID: 3152293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Anguela XM, Sharma R, Doyon Y, Miller JC, Li H, Haurigot V, et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood. 2013;122(19):3283–7. Pubmed Central PMCID: 3821724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell. 2015;17(2):213–20.

    Article  CAS  PubMed  Google Scholar 

  235. Park CY, Kim J, Kweon J, Son JS, Lee JS, Yoo JE, et al. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc Natl Acad Sci U S A. 2014;111(25):9253–8. Pubmed Central PMCID: 4078797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, et al. Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther. 2015;23(3):570–7. Pubmed Central PMCID: 4351458.

    Article  CAS  PubMed  Google Scholar 

  237. Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. 2015;6:6244. Pubmed Central PMCID: 4335351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep. 2015;4(1):143–54. Pubmed Central PMCID: 4297888.

    Article  CAS  Google Scholar 

  239. Toscano MG, Anderson P, Munoz P, Lucena G, Cobo M, Benabdellah K, et al. Use of zinc-finger nucleases to knock out the WAS gene in K562 cells: a human cellular model for Wiskott-Aldrich syndrome. Dis Model Mech. 2013;6(2):544–54. Pubmed Central PMCID: 3597037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep. 2015;12(9):1385–90. Pubmed Central PMCID: 4559351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014;115(5):488–92. Pubmed Central PMCID: 4134749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345(6201):1184–8. Pubmed Central PMCID: 4398027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28(8):839–47. Pubmed Central PMCID: 3080757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A. 2014;111(31):11461–6. Pubmed Central PMCID: 4128125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Yuen KS, Chan CP, Wong NH, Ho CH, Ho TH, Lei T, et al. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells. J Gen Virol. 2015;96(Pt 3):626–36.

    Article  CAS  PubMed  Google Scholar 

  246. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186–91. Pubmed Central PMCID: 4393360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Vani Shanker for editing the manuscript.

Funding

The author received support from the American Lebanese Syrian Associated Charities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephane Pelletier Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pelletier, S. (2016). Genome Editing with Targetable Nucleases. In: Turksen, K. (eds) Genome Editing. Springer, Cham. https://doi.org/10.1007/978-3-319-34148-4_1

Download citation

Publish with us

Policies and ethics