Skip to main content

Effects of Renal Denervation on Sympathetic Nervous System Activity

  • Chapter
  • First Online:
Interventional Therapies for Secondary and Essential Hypertension

Abstract

Prior to the emergence of percutaneous radiofrequency-based therapy for renal denervation, considerable preclinical and clinical experience reinforced the importance for afferent and efferent renal sympathetic nerve activity in the initiation and maintenance of hypertension and other cardiovascular diseases. The role of the adrenergic tone is also supported by the evidence of an increased renal norepinephrine spillover to plasma in resistant hypertensives – a biomarker of increased renal sympathetic activation. The observation that surgical renal sympathectomy improved blood pressure control has led to the considerations of a percutaneous approach to renal sympathetic denervation. The rapid evolution in our understanding of both the human renal nerve microanatomy and the ideal technique for the safe application of radiofrequency technology leads to successful renal nerve ablation in previous trials on resistant hypertension and for future studies in pathophysiological conditions characterized by an hyperadrenergic tone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BP:

Blood pressure

HTN:

Hypertension

NTS:

Nucleus tractus solitarius

RDN:

Renal denervation

SNS:

Sympathetic nervous system

References

  1. Alexanders RS (1946) Tonic and reflex functions of medullary sympathetic cardiovascular centers. J Neurophysiol 9:205–17

    Google Scholar 

  2. Loewy AD (1990) Central autonomic pathways. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, Oxford, pp 88–103

    Google Scholar 

  3. Jordan D, Spyer KM (1986) Brainstem integration of cardiovascular and pulmonary afferent activity. Prog Brain Res 67:295–314

    Article  CAS  PubMed  Google Scholar 

  4. Coleridge HM, Coleridge JCG, Jordan D (1991) Integration of ventilator and cardiovascular control system. In: Crystal RG, West JB (eds) The lung: scientific foundations. Raven, New York, pp 1405–18

    Google Scholar 

  5. Janig W, Habler HJ (2000) Specificity in the organization of the autonomic nervous system: a basis for precise neural regulation of homeostatic and protective body functions. Prog Brain Res 122:351–67

    Article  CAS  PubMed  Google Scholar 

  6. Janig W (2006) The integrative action of the autonomic nervous system neurobiology of homeostasis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Grassi G, Esler M (1999) How to assess sympathetic activity in humans. J Hypertens 17:719–34

    Article  CAS  PubMed  Google Scholar 

  8. Seravalle G, Dimitriadis K, Dell’oro R, Grassi G (2013) How to assess sympathetic nervous system activity in clinical practice. Curr Clin Pharmacol 8:182–8

    Article  CAS  PubMed  Google Scholar 

  9. Shen MJ, Zipes DP (2014) Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res 114:1004–21

    Article  CAS  PubMed  Google Scholar 

  10. Grassi G, Vailati S, Bertinieri G, Seravalle G, Stella ML, Dell’Oro R, Mancia G (1998) Heart rate as a marker of sympathetic activity. J Hypertens 16:1635–9

    Article  CAS  PubMed  Google Scholar 

  11. Eckberg DL (1997) Sympathovagal balance: a critical appraisal. Circulation 96:3224–32

    Article  CAS  PubMed  Google Scholar 

  12. Esler M, Jennings G, Korner P, Blombery P, Zacharias N, Leonard P (1984) Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol 247:E21–8

    CAS  PubMed  Google Scholar 

  13. Esler M, Jennings G, Korner P, Willett I, Dudley F, Hasking G, Anderson W, Lambert G (1988) Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 11:3–20

    Article  CAS  PubMed  Google Scholar 

  14. Grassi G, Seravalle G, Dell’Oro R, Arenare F, Facchetti R, Mancia G (2009) Reproducibility patterns of plasma norepinephrine and muscle sympathetic nerve traffic in human obesity. Nutr Metab Cardiovasc Dis 19:469–75

    Article  CAS  PubMed  Google Scholar 

  15. Eisenhofer G, Esler MD, Goldstein DS, Kopin IJ (1991) Neuronal uptake, metabolism, and release of tritium-labeled norepinephrine during assessment of its plasma kinetics. Am J Physiol Endocrinol Metab 261:E505–15

    CAS  Google Scholar 

  16. Vaz M, Jennings G, Turner A, Cox H, Lambert G, Esler M (1997) Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation 96:3423–9

    Article  CAS  PubMed  Google Scholar 

  17. Hagbarth KE, Vallbo AB (1968) Pulse and respiratory grouping of sympathetic impulses in human muscle nerves. Acta Physiol Scand 74:96–108

    Article  CAS  PubMed  Google Scholar 

  18. Macefield VG, Wallin BG, Vallbo AB (1994) The discharge behavior of single vasoconstrictor motoneurones in human muscle nerves. J Physiol 481:799–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lambert EA, Schlaich MP, Dawood T, Sari C, Chopra R, Barton D, Kaye DM, Elam M, Esler M, Lambert GW (2011) Single-unit muscle sympathetic nervous activity and its relation to cardiac noradrenaline spillover. J Physiol 589:2597–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamada Y, Miyajima E, Tochikubo O, Matsukawa AT, Ishii M (1989) Age-related changes in muscle sympathetic nerve activity in essential hypertension. Hypertension 13:870–7

    Article  CAS  PubMed  Google Scholar 

  21. Anderson EA, Sinkey CA, Lawton WJ, Mark AL (1989) Elevated sympathetic nerve activity in borderline hypertensive humans: evidence from direct intraneural recordings. Hypertension 14:177–83

    Article  CAS  PubMed  Google Scholar 

  22. Seravalle G, Lonati L, Buzzi S, Cairo M, Quarti Trevano F, Dell’oro R, Facchetti R, Mancia G, Grassi G (2015) Sympathetic nerve traffic and baroreflex function in optimal, normal and high-normal blood pressure states. J Hypertens 33:1411–7

    Article  CAS  PubMed  Google Scholar 

  23. Floras JS, Hara K (1993) Sympathoneural and hemodynamic characteristics of young subjects with mild essential hypertension. J Hypertens 11:647–55

    Article  CAS  PubMed  Google Scholar 

  24. Palatini P, Dorigatti F, Zaetta V, Mormino P, Mazzer A, Bortolazzi A, D’Este D, Pegoraro F, Milani L, Mos L, HARVEST Study Group (2006) Heart rate as a predictor of development of sustained hypertension in subjects screened for stage 1 hypertension: the HARVEST study. J Hypertens 24:1873–80

    Article  CAS  PubMed  Google Scholar 

  25. Grassi G, Seravalle G, Cattaneo BM, Bolla GB, Lanfranchi A, Colombo M, Giannattasio C, Brunani A, Cavagnini F, Mancia G (1995) Sympathetic activation in obese normotensive subjects. Hypertension 25:560–3

    Article  CAS  PubMed  Google Scholar 

  26. Kassab S, Kato T, Wilkins FC, Chen R, Hall JE, Kaiser J, Granger JP (1995) Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension 25:893–7

    Article  CAS  PubMed  Google Scholar 

  27. Anderson EA, Balon TW, Hoffman RP, Sinkey CA, Mark AL (1992) Insulin increases sympathetic activity but not blood pressure in borderline hypertensive humans. Hypertension 19:621–7

    Article  CAS  PubMed  Google Scholar 

  28. Julius S, Gundrandsson T, Jamerson K, Andersson O (1992) The interconnection between sympathetic, microcirculation and insulin resistance in hypertension. Blood Press 1:9–19

    Article  CAS  PubMed  Google Scholar 

  29. Grassi G, Dell’Oro R, Quarti Trevano F, Scopelliti F, Seravalle G, Paleari F, Gamba PL, Mancia G (2005) Noradrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia 48:1359–65

    Article  CAS  PubMed  Google Scholar 

  30. Narkiewicz K, van de Borne PJ, Cooley RL, Dyken ME, Somers VK (1998) Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation 98:772–6

    Article  CAS  PubMed  Google Scholar 

  31. Grassi G, Seravalle G, Quarti Trevano F, Mineo C, Lonati L, Facchetti R, Mancia G (2010) Reinforcement of the adrenergic overdrive in the metabolic syndrome complicated by obstructive sleep apnea. J Hypertens 28:1313–20

    CAS  PubMed  Google Scholar 

  32. Huggett RJ, Scott EM, Gilbey SG, Stoker JB, Macintosh AF, Mary DA (2003) Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation 108:3097–101

    Article  CAS  PubMed  Google Scholar 

  33. Gordon RD, Backmann AW, Jackson RV, Saar N (1982) Increased sympathetic activity in renovascular hypertension in man. Clin Exp Pharmacol Physiol 9:277–81

    CAS  PubMed  Google Scholar 

  34. Grassi G, Quarti Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, Dell’Oro R, Mancia G (2011) Early sympathetic activation in the initial stages of chronic renal failure. Hypertension 57:846–51

    Article  CAS  PubMed  Google Scholar 

  35. Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, Dietl KH, Rahn KH (2002) Sympathetic nerve activity in end-stage renal disease. Circulation 106:1974–9

    Article  PubMed  Google Scholar 

  36. Leimbach WN Jr, Wallin BG, Victor RG, Aylward PE, Sundlof G, Mark AL (1986) Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 73:913–9

    Article  PubMed  Google Scholar 

  37. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI (1986) Norepinephrine spillover to plasma in patients with congestive heart failure evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–21

    Article  CAS  PubMed  Google Scholar 

  38. Grassi G, Seravalle G, Cattaneo BM, Lanfranchi A, Vailati S, Giannattasio C, Del Bo A, Sala C, Bolla GB, Pozzi M, Mancia G (1995) Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure. Circulation 92:3206–11

    Article  CAS  PubMed  Google Scholar 

  39. Smith HW (1951) The kidney: structure and function. Oxford Univ Press, New York

    Google Scholar 

  40. Smith HW (1937) The physiology of the kidney. Oxford Univ Press, New York

    Google Scholar 

  41. Muller J, Barajas L (1972) Electron microscopic and histochemical evidence for a tubular innervations in the renal cortex of the monkey. J Ultrastruct Res 41:533–49

    Article  CAS  PubMed  Google Scholar 

  42. Barajas L, Liu L, Powers K (1992) Anatomy of the renal innervations: intrarenal aspects and ganglia of origin. Can J Physiol Pharmacol 70:735–49

    Article  CAS  PubMed  Google Scholar 

  43. Bell-Reuss E, Trevino DL, Gottschalk CW (1976) Effects of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest 57:1104–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zanchetti A (1977) Neural regulation of renin release: experimental evidence and clinical implications in arterial hypertension. Circulation 56:691–8

    Article  CAS  PubMed  Google Scholar 

  45. LaGrange RG, Sloop CH, Schmid HE (1973) Selective stimulation of renal nerves in the anesthetized dog. Circ Res 33:704–12

    Article  CAS  Google Scholar 

  46. Stella A (1992) The kidney as a sensor: functional evidence. J Hypertens 10:a113–s119

    Article  Google Scholar 

  47. Zanchetti A, Stella A, Golin R, Genovesi S (1984) Neural control of the kidney – are there reno-renal reflexes? Clin Exp Hypertens 6:275–86

    CAS  Google Scholar 

  48. Campese VM (1997) Neurogenic factors and hypertension in chronic renal failure. J Nephrol 10:184–7

    CAS  PubMed  Google Scholar 

  49. Ye S, Zhong H, Yanamadala V, Campese VM (2002) Renal injury caused by intraneural injection of phenol increases afferent and efferent renal sympathetic nerve activity. Am J Hypertens 15:717–24

    Article  CAS  PubMed  Google Scholar 

  50. Stella A, Zanchetti A (1991) Functional role of renal afferents. Physiol Rev 71:659–82

    CAS  PubMed  Google Scholar 

  51. DiBona GF (2000) Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol Regulatory Integrative Comp Physiol 279:R1517–24

    CAS  Google Scholar 

  52. Converse RL, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, Victor RG (1992) Sympathetic overactivity in patients with chronic renal failure. N Engl J Med 327:1912–8

    Article  PubMed  Google Scholar 

  53. Zoccali C, Mallamaci F, Parlongo S, Cutrupi S, Benedetto FA, Tripepi G, Bonanno G, Rapisarda F, Fatuzzo P, Seminara G, Cataliotti A, Stancanelli B, Malatino LS (2002) Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation 105:1354–9

    Article  CAS  PubMed  Google Scholar 

  54. Hering D, Mahfoud F, Walton AS, Krum H, Lambert GW, Lambert EA, Sobotka PA, Bohm M, Cremers B, Esler M, Schlaich MP (2012) Renal denervation in moderate to severe CKD. J Am Soc Nephrol 23:1250–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schlaich MP, Bart B, Hering D, Walton A, Marusic P, Mahfoud F, Böhm M, Lambert EA, Krum H, Sobotka PA, Schmieder RE, Ika-Sari C, Eikelis N, Straznicky N, Lambert GW, Esler MD (2013) Feasibility of catheter-based renal nerve ablation and effects of sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol 168:2214–20

    Article  PubMed  Google Scholar 

  56. Rippy MK, Zarins D, Barman NC, Wu A, Duncan KL, Zarins CK (2011) Catheter-based renal sympathetic denervation: chronic preclinical evidence for renal artery safety. Clin Res Cardiol 100:1095–101

    Article  PubMed  Google Scholar 

  57. Tellez A, Rousselle S, Palmieri T, Rate WR IV, Wicks J, Degrange A, Hyon CM, Gongora CA, Hart R, Grundy W, Kaluza GL, Granada JF (2013) Renal artery nerve distribution and density in the porcine model: biologic implications for the development of radiofrequency ablation therapies. Transl Res 162:381–9

    Article  PubMed  Google Scholar 

  58. Tzafriri AR, Mahfoud F, Keating JH, Markham PM, Spognardi A, Wong G, Fujimaono K, Bohm M, Edelman ER (2014) Innervation patterns may limit response to endovascular renal denervation. J Am Coll Cardiol 64:1079–87

    Article  PubMed  PubMed Central  Google Scholar 

  59. Atherton DS, Deep NL, Mendelsohn FO (2012) Microanatomy of the renal sympathetic nervous system: a human postmortem histologic study. Clin Anat 25:628–33

    Article  PubMed  Google Scholar 

  60. Sakakura K, Ladich E, Edelman ER, Markham P, Stanley JRL, Keating J, Kolodgie FD, Virmani R, Joner M (2014) Methodological standardization for the pre-clinical evaluation of renal sympathetic denervation. J Am Coll Cardiol Intv 7:1184–93

    Article  Google Scholar 

  61. Tunstall RR, Winsor-Hines D, Butt M, Huibregtse B (2012) A preclinical comparative histological evaluation of the renal artery and nerves in the human cadaver and swine model. J Am Coll Cardiol 60(17):TCT 216. doi:10.1016/j.jacc.2012.08.238

    Article  Google Scholar 

  62. Hua XY, Thodorsson-Norheim E, Lundberg JM, Kinn AC, Hockfelt T, Cuello AC (1987) Co-localization of tachykinins and calcitonin gene-related peptide in capsaicin-sensitive afferents in relation to motility effects on the human ureter in vitro. Neuroscience 23:693–703

    Article  CAS  PubMed  Google Scholar 

  63. Knight DS, Cicero S, Beal JA (1991) Calcitonin gene-related peptide-immunoreactive nerves in the rat kidney. Am J Anat 190:31–40

    Article  CAS  PubMed  Google Scholar 

  64. Mafeld S, Vasdev N, Haslam P (2012) Renal denervation for treatment resistant hypertension. Ther Adv Cardiovasc Dis 6:245–58

    Article  PubMed  Google Scholar 

  65. Grimson KS, Wilson H, Phemister DB (1937) The early and remote effects of total and partial paravertebral sympathectomy on blood pressure: an experimental study. Ann Surg 106:801–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grimson KS (1941) Total thoracic and partial to total lumbar sympathectomy and celiac ganglionectomy in the treatment of hypertension. Ann Surg 114:753–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smithwick RH, Thompson JE (1953) Splanchnicectomy for essential hypertension: results in 1266 cases. J Am Med Assoc 152:1501–4

    Article  CAS  PubMed  Google Scholar 

  68. Pfaff WW, Cade JR, De Quesada A, Jurkiewicz MJ (1968) Reevaluation of thoracic sympathectomy for the management of malignant hypertension. Surg Forum 19:172–4

    CAS  PubMed  Google Scholar 

  69. Grassi G, Seravalle G, Brambilla G, Pini C, Alimento M, Facchetti R, Spaziani D, Cuspidi C, Mancia G (2014) Marked sympathetic activation and baroreflex dysfunction in true resistant hypertension. Int J Cardiol 177:1020–5

    Article  PubMed  Google Scholar 

  70. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler M (2009) Renal sympathetic nerve ablation for uncontrolled hypertension. N Engl J Med 361:932–4

    Article  CAS  PubMed  Google Scholar 

  71. Brickmann J, Heusser K, Schmidt BM, Menne J, Klein G, Bauersachs J, Haller H, Sweep FC, Diedrich A, Jordan J, Tank J (2012) Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension 60:1485–90

    Article  Google Scholar 

  72. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, Esler MD, Schlaich MP (2013) Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension 61:457–64

    Article  CAS  PubMed  Google Scholar 

  73. Hering D, Marusic P, Walton AS, Lambert EA, Krum H, Narkiewicz K, Lambert GW, Esler MD, Schlaich MP (2014) Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension. Hypertension 64:118–24

    Article  CAS  PubMed  Google Scholar 

  74. Grassi G, Seravalle G, Brambilla G, Trabattoni D, Cuspidi C, Corso R, Pieruzzi F, Genovesi S, Stella A, Facchetti R, Spaziani D, Bartorelli A, Mancia G (2015) Blood pressure responses to renal denervation precede and are independent of the sympathetic and baroreflex effects. Hypertension 65:1209–16

    Article  CAS  PubMed  Google Scholar 

  75. Mancia G, Grassi G (2014) The autonomic nervous system and hypertension. Circ Res 114:1804–14

    Article  CAS  PubMed  Google Scholar 

  76. Wallin BG, Thompson JM, Jennings GL, Esler MD (1996) Renal noradrenaline spillover correlates with muscle sympathetic activity in humans. J Physiol 49:881–7

    Article  Google Scholar 

  77. Kjeldsen SE, Os I, Mahfoud F (2013) Treatment resistant hypertension and renal sympathetic denervation: drug adherence and the consolidation of blood pressure lowering effects. Eurointervention 9(suppl R):R7–9

    Article  PubMed  Google Scholar 

  78. DiBona GF, Esler M (2010) Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol 298:R245–53

    Article  CAS  PubMed  Google Scholar 

  79. Kubota J, Nishimura H, Ueyama M, Kawamura K (1993) Effects of renal denervation on pressure-natriuresis in spontaneously hypertensive rats. Jpn Circ J 57:1097–105

    Article  CAS  PubMed  Google Scholar 

  80. Wang Y, Denton KM, Golledge J (2013) Control of salt and volume retention cannot be ruled out as a mechanism underlying the blood pressure-lowering effect of renal denervation. Hypertens Res 36:1006–7

    Article  PubMed  Google Scholar 

  81. Ukena C, Mahfoud F, Spies A, Kindermann I, Linz D, Cremers B, Laufs U, Neuberger HR, Bohm M (2013) Effects of renal sympathetic denervation on heart rate and atrioventricular conduction in patients with resistant hypertension. Int J Cardiol 167:2846–51

    Article  PubMed  Google Scholar 

  82. Esler MD, Bohm M, Sievert H, Rump CL, Schmieder RE, Krum H, Mahfoud F, Schlaich MP (2014) Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J 35:1752–9

    Article  PubMed  Google Scholar 

  83. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373:1275–81

    Article  PubMed  Google Scholar 

  84. Worthley SG, Tsioufis CP, Worthley MI, Sinhal A, Chew DP, Meredith IT, Malalapan Y, Papademetriou V (2013) Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN-1 Trial. Eur Heart J 34:2132–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Grassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seravalle, G., Brambilla, G., Grassi, G. (2016). Effects of Renal Denervation on Sympathetic Nervous System Activity. In: Tsioufis, C., Schmieder, R., Mancia, G. (eds) Interventional Therapies for Secondary and Essential Hypertension. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-34141-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34141-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34140-8

  • Online ISBN: 978-3-319-34141-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics