Skip to main content

Pathophysiology of Renal Sympathetic Denervation (RSDN)

  • Chapter
  • First Online:
  • 800 Accesses

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

Abstract

Activation of the sympathetic nervous system (SNS) has been identified as a key pathophysiological feature involved in the initiation, progression but also prognosis of most cardiometabolic disorders (chronic heart failure or kidney disease, coronary heart disease, obesity, diabetes, etc.), among them hypertension (HTN). This has been established through studies recording SNS activation at systemic and local levels using different techniques to measure SNS outflow to various organs. Mechanisms leading to SNS activation are heterogeneous varying from central activation to reflex-mediated sympathoexcitation (or lack of sympathoinhibition).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BP:

Blood pressure

CGRP:

Calcitonin gene-related peptide

CHF:

Congestive heart failure

GFR:

Glomerular filtration rate

HR:

Heart rate

HTN:

Hypertension

JGC:

Juxtaglomerular granular cells

MSNA:

Muscle sympathetic nerve activity

NOx:

Nitrogen oxide

RBF:

Renal blood flow

RDN:

Renal denervation

SHR:

Spontaneously hypertensive rats

SNA:

Sympathetic nerve activity

SNS:

Sympathetic nervous system

SP:

Surfactant protein

References

  1. Bernard C Leçons sur les Propriétés Physiologiques et les Altérations Pathologiques des Liquides de l’Organisme, vol. 2. Paris: Bailliere; 1859.

    Google Scholar 

  2. Starling EH. The chemical control of the body. Harvey lectures 1907–1908. New York: JB Lippincott Co.; 1909.

    Google Scholar 

  3. Muller J, Barajas L. Electron microscopic and histochemical evidence for a tubular innervation in the renal cortex of the monkey. J Ultrastruct Res. 1972;41(5):533–49.

    Article  CAS  PubMed  Google Scholar 

  4. Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev. 1990;70(4):963–85.

    CAS  PubMed  Google Scholar 

  5. Esler M, Lambert E, Schlaich M. Point: chronic activation of the sympathetic nervous system is the dominant contributor to systemic hypertension. J Appl Physiol (Bethesda, Md: 1985). 2010;109(6):1996–8; discussion 2016. doi:10.1152/japplphysiol.00182.2010.

    Article  Google Scholar 

  6. Kopp UC, Olson LA, DiBona GF. Renorenal reflex responses to mechano- and chemoreceptor stimulation in the dog and rat. Am J Physiol. 1984;246(1 Pt 2):F67–77.

    CAS  PubMed  Google Scholar 

  7. Recordati GM, Moss NG, Genovesi S, Rogenes PR. Renal receptors in the rat sensitive to chemical alterations of their environment. Circ Res. 1980;46(3):395–405.

    Article  CAS  PubMed  Google Scholar 

  8. Nijima A. Afferent discharges from arterial mechanoreceptors in the kidney of the rabbit. J Physiol. 1971;219(2):477–85.

    Article  CAS  PubMed  Google Scholar 

  9. Esler M. Renal denervation for hypertension: observations and predictions of a founder. Eur Heart J. 2014;35(18):1178–85. doi:10.1093/eurheartj/ehu091.

    Article  PubMed  Google Scholar 

  10. Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116(6):976–90. doi:10.1161/circresaha.116.303604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. DiBona GF, Sawin LL. Effect of renal denervation on dynamic autoregulation of renal blood flow. Am J Physiol Renal Physiol. 2004;286(6):F1209–18. doi:10.1152/ajprenal.00010.2004.

    Article  CAS  PubMed  Google Scholar 

  12. Campese VM, Kogosov E, Koss M. Renal afferent denervation prevents the progression of renal disease in the renal ablation model of chronic renal failure in the rat. Am J Kidney Dis: the official journal of the National Kidney Foundation. 1995;26(5):861–5.

    Article  CAS  Google Scholar 

  13. Wyss JM, Sripairojthikoon W, Oparil S. Failure of renal denervation to attenuate hypertension in Dahl NaCl-sensitive rats. Can J Physiol Pharmacol. 1987;65(12):2428–32.

    Article  CAS  PubMed  Google Scholar 

  14. Granger J, Novak J, Schnackenberg C, Williams S, Reinhart GA. Role of renal nerves in mediating the hypertensive effects of nitric oxide synthesis inhibition. Hypertension. 1996;27(3 Pt 2):613–8.

    Article  CAS  PubMed  Google Scholar 

  15. DiBona GF. Physiology in perspective: the wisdom of the body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol. 2005;289(3):R633–41. doi:10.1152/ajpregu.00258.2005.

    Article  CAS  PubMed  Google Scholar 

  16. Ishii K, Idesako M, Matsukawa K. Differential contribution of aortic and carotid sinus baroreflexes to control of heart rate and renal sympathetic nerve activity. J Physiol Sci: JPS. 2015;65(5):471–80. doi:10.1007/s12576-015-0387-2.

    Article  PubMed  Google Scholar 

  17. Kline RL. Renal nerves and experimental hypertension: evidence and controversy. Can J Physiol Pharmacol. 1987;65(8):1540–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kline RL, Mercer PF. Functional reinnervation and development of supersensitivity to NE after renal denervation in rats. Am J Physiol. 1980;238(5):R353–8.

    CAS  PubMed  Google Scholar 

  19. Norman Jr RA, Dzielak DJ. Role of renal nerves in onset and maintenance of spontaneous hypertension. Am J Physiol. 1982;243(2):H284–8.

    PubMed  Google Scholar 

  20. Lohmeier TE, Iliescu R, Liu B, Henegar JR, Maric-Bilkan C, Irwin ED. Systemic and renal-specific sympathoinhibition in obesity hypertension. Hypertension. 2012;59(2):331–8. doi:10.1161/hypertensionaha.111.185074.

    Article  CAS  PubMed  Google Scholar 

  21. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1,266 cases. JAMA. 1953;152(16):1501–4.

    Article  CAS  Google Scholar 

  22. Hering D, Marusic P, Walton AS, Lambert EA, Krum H, Narkiewicz K, Lambert GW, Esler MD, Schlaich MP. Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension. Hypertension. 2014;64(1):118–24. doi:10.1161/hypertensionaha.113.03098.

    Article  CAS  PubMed  Google Scholar 

  23. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, Esler MD, Schlaich MP. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61(2):457–64. doi:10.1161/hypertensionaha.111.00194.

    Article  CAS  PubMed  Google Scholar 

  24. Tank J, Heusser K, Brinkmann J, Schmidt BM, Menne J, Bauersachs J, Haller H, Diedrich A, Jordan J. Spike rate of multi-unit muscle sympathetic nerve fibers after catheter-based renal nerve ablation. J Am Soc Hypertens: JASH. 2015;9(10):794–801. doi:10.1016/j.jash.2015.07.012.

    Article  PubMed  Google Scholar 

  25. Booth LC, Nishi EE, Yao ST, Ramchandra R, Lambert GW, Schlaich MP, May CN. Reinnervation following catheter-based radio-frequency renal denervation. Exp Physiol. 2015;100(5):485–90. doi:10.1113/expphysiol.2014.079871.

    Article  PubMed  Google Scholar 

  26. Poss J, Ewen S, Schmieder RE, Muhler S, Vonend O, Ott C, Linz D, Geisel J, Rump LC, Schlaich M, Bohm M, Mahfoud F. Effects of renal sympathetic denervation on urinary sodium excretion in patients with resistant hypertension. Clin Res Cardiol Off J German Cardiac Soc. 2015;104(8):672–8. doi:10.1007/s00392-015-0832-5.

    Article  Google Scholar 

  27. McArdle MJ, deGoma EM, Cohen DL, Townsend RR, Wilensky RL, Giri J. Beyond blood pressure: percutaneous renal denervation for the management of sympathetic hyperactivity and associated disease states. J Am Heart Assoc. 2016;4(3):001415. doi:10.1161/jaha.114.001415.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Pathak MD, Phd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pathak, A., Honton, B., Lobo, M. (2016). Pathophysiology of Renal Sympathetic Denervation (RSDN). In: Tsioufis, C., Schmieder, R., Mancia, G. (eds) Interventional Therapies for Secondary and Essential Hypertension. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-34141-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34141-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34140-8

  • Online ISBN: 978-3-319-34141-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics