Skip to main content

Metapopulation and Non-proportional Vaccination Models Overview

  • Conference paper
  • First Online:
Advances in the Mathematical Sciences

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 6))

Abstract

Influenza viruses are a major cause of morbidity and mortality worldwide. The 2009 influenza pandemic not only brought to our attention the strengths and weaknesses of the public health system but also changed their priorities. Vaccination still is the most powerful allay for preventing or mitigating influenza outbreaks or other diseases. In this article, we summarize our findings that arose from two different published research articles (see Cruz-Aponte et al. BMC Infect. Dis. 11(1), 207, (2011), [22], Herrera-Valdez et al. Math. Biosci. Eng. (MBE) 8(1), 21–48, (2011), [36]) that were presented at the Association of Woman in Mathematics (AWM) 2015 symposium at the University of Maryland College Park. The first one is a metapopulation model we constructed using the data from México’s 2009 epidemic patterns characterized by three peaks. These peak patterns were theoretically investigated via models that incorporate México’s general trends of land transportation, public health measures, and the academic calendar trends of that year. After studying many mathematical models that incorporated vaccination into the modeling, we were not satisfied with the simplification approaches that usually took place. Vaccinating only the susceptible individuals or vaccinating a fraction of the population was not realistic when supplies or daily administration capacity was considered. Hence, in the second project we presented a SIR-like model that explicitly takes into account vaccine supply and the number of vaccines administered per day and places data-informed limits on these parameters. The model that we refer to as non-proportional vaccination model is a theoretical improvement that provides more accurate predictions of the mitigating effects of vaccination than the typical proportional model. For some parameter regimes, proportional and non-proportional models behave the same, especially when the vaccination supplies were depleted but for others there were significant changes that predicted earlier or longer epidemics as we discuss further. Both of our models can be easily modified to be used by government and medical officials to create preparedness plans based on specific constraints.

This article is dedicated to my beloved friend Dr. Lukasz Adam Koscielski (1985–2015) cheers to you for a brief but brilliantly well lived life. Kocham Cie i Tesknie za Toba bardzo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Aaby, R.L. Abbey, J.W. Herrmann, M. Treadwell, C.S. Jordan, K. Wood, Embracing computer modeling to address pandemic influenza in the 21st century. J. Public Health Manag. Pract. 12(4), 365–372 (2006)

    Article  Google Scholar 

  2. R. Acuña-Soto, Death records from historical archives: a valuable source of epidemiological information, Mathematical and Statistical Estimation Approaches in Epidemiology (Springer, Dordrecht, 2009), pp. 189–194

    Chapter  Google Scholar 

  3. J. Arino, Diseases in Metapopulations, vol. 11. Series in Contemporary Applied Mathematics (2009), pp. 65–123. (Also CDM Preprint Series report 2008-04)

    Google Scholar 

  4. J. Arino, P. van den Driessche, A multi-city epidemic model. Math. Popul. Stud. 10(3), 175–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Arino, P. van den Driessche, The basic reproduction number in a multi-city compartmental epidemic model. Lect. Notes Control Inf. Sci. 294, 135–142 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Arino, J.R. Davis, D. Hartley, R. Jordan, J.M. Miller, P. van Den Driessche, A multi-species epidemic model with spatial dynamics. Math. Med. Biol. 22(2), 129 (2005)

    Article  MATH  Google Scholar 

  7. J. Arino, F. Brauer, P. Van den Driessche, J. Watmough, J. Wu, A model for influenza with vaccination and antiviral treatment. J. Theor. Biol. 253(1), 118–130 (2008)

    Article  MathSciNet  Google Scholar 

  8. F. Brauer, Compartmental models in epidemiology. Math. Epidemiol. 1945, 19–79 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Brauer, Mathematical epidemiology is not an oxymoron. BMC Public Health 9, 1–11 (2009)

    Article  Google Scholar 

  10. F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology (Springer, New York, 2001)

    Book  MATH  Google Scholar 

  11. F. Carrat, J. Luong, H. Lao, A.V. Sallé, C. Lajaunie, H. Wackernagel, A ‘small-world-like’ model for comparing interventions aimed at preventing and controlling influenza pandemics. BMC Med. 4, 26 (2006)

    Article  Google Scholar 

  12. F. Carrat, E. Vergu, N.M. Ferguson, M. Lemaitre, S. Cauchemez, S. Leach, A.J. Valleron, Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am. J. Epidemiol. 167(7), 775–785 (2008)

    Article  Google Scholar 

  13. Centers for Disease Control and Prevention. Large-scale vaccination clinic output and staffing estimates: an example (2009)

    Google Scholar 

  14. Centers for Disease Control and Prevention. Influenza symptoms and laboratory diagnostic procedures. Accessed March 2011

    Google Scholar 

  15. B.H. Cho, K.A. Hicks, A.A. Honeycutt, N. Hupert, O. Khavjou, M. Messonnier, M.L. Washington, A tool for the economic analysis of mass prophylaxis operations with an application to H1N1 influenza vaccination clinics. J. Public Health Manag. Pract. 17(1), E22–E28 (2011)

    Article  Google Scholar 

  16. G. Chowell, M.A. Miller, C. Viboud, Seasonal influenza in the United States, France, and Australia: transmission and prospects for control. Epidemiol. Infect. 136(06), 852–864 (2008)

    Article  Google Scholar 

  17. G. Chowell, C. Viboud, X. Wang, S.M. Bertozzi, M.A. Miller, Adaptive vaccination strategies to mitigate pandemic influenza: Mexico as a case study. PLoS One 4(12), e8164 (2009)

    Article  Google Scholar 

  18. M.L. Ciofi degli Atti, S. Merler, C. Rizzo, M. Ajelli, M. Massari, P. Manfredi, C. Furlanello, G. Scalia Tomba, M. Iannelli, N. Ahmed, Mitigation measures for pandemic influenza in Italy: an individual based model considering different scenarios. PLoS One 3, e1790 (2008)

    Article  Google Scholar 

  19. B.J. Coburn, B.G. Wagner, S. Blower, Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Med. 7, 30 (2009)

    Article  Google Scholar 

  20. R.B. Couch, J.A. Kasel, Immunity to influenza in man. Annu. Rev. Microbiol. 37(1), 529–549 (1983)

    Article  Google Scholar 

  21. R.B. Couch, R.G. Douglas Jr., D.S. Fedson, J.A. Kasel, Correlated studies of a recombinant influenza-virus vaccine. III. Protection against experimental influenza in man. J. Infect. Dis. 124(5), 473–480 (1971)

    Article  Google Scholar 

  22. M. Cruz-Aponte, E. McKiernan, M.A. Herrera-Valdez, Mitigating effects of vaccination on influenza outbreaks given constraints in stockpile size and daily administration capacity. BMC Infect. Dis. 11(1), 207 (2011)

    Article  Google Scholar 

  23. J.M. Epstein, D.M. Goedecke, F. Yu, R.J. Morris, D.K. Wagener, G.V. Bobashev, Controlling pandemic flu: the value of international air travel restrictions. PLoS One 2(5), 401 (2007)

    Article  Google Scholar 

  24. M. Falco, Cdc: production of H1N1 flu lagging (2009). http://nats.sct.gob.mx/nats/sys/index.jsp?i=3

  25. D.S. Fedson, Pandemic influenza and the global vaccine supply. Clin. Infect. Dis. 36(12), 1552–1561 (2003)

    Article  Google Scholar 

  26. D.S. Fedson, Preparing for pandemic vaccination: an international policy agenda for vaccine development. J. Public Health Policy 26(1), 4–29 (2005)

    Article  Google Scholar 

  27. N.M. Ferguson, D.A.T. Cummings, C. Fraser, J.C. Cajka, P.C. Cooley, D.S. Burke, Strategies for mitigating an influenza pandemic. Nature 442(7101), 448–452 (2006)

    Article  Google Scholar 

  28. A. Flahault, E. Vergu, L. Coudeville, R.F. Grais, Strategies for containing a global influenza pandemic. Vaccine 24(44–46), 6751–6755 (2006)

    Article  Google Scholar 

  29. A. Flahault, X. de Lamballerie, T. Hanslik, N. Salez, Symptomatic infections less frequent with H1N1pdm than with seasonal strains. PLoS Curr. 1, RRN1140 (2009)

    Google Scholar 

  30. H.M. Foy, M.K. Cooney, I.D. Allan, J.K. Albrecht, Influenza B in households: virus shedding without symptoms or antibody response. Am. J. Epidemiol. 126(3), 506–515 (1987)

    Google Scholar 

  31. T.C. Germann, K. Kadau, I.M. Longini Jr., C.A. Macken, Mitigation strategies for pandemic influenza in the United States. PNAS 103(15), 5935–5940 (2006)

    Article  Google Scholar 

  32. W.P. Glezen, Herd protection against influenza. J. Clin. Virol. 37(4), 237–243 (2006)

    Article  Google Scholar 

  33. P.A. Gross, A.W. Hermogenes, H.S. Sacks, J. Lau, R.A. Levandowski, The efficacy of influenza vaccine in elderly persons. Ann. Intern. Med. 123(7), 518–527 (1995)

    Article  Google Scholar 

  34. F.G. Hayden, R. Fritz, M.C. Lobo, W. Alvord, W. Strober, S.E. Straus, Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J. Clin. Investig. 101(3), 643–649 (1998)

    Article  Google Scholar 

  35. Health Industry Distributors Association. 2008–2009 influenza vaccine production and distribution (2009)

    Google Scholar 

  36. M.A. Herrera-Valdez, M. Cruz-Aponte, C. Castillo-Chavez, Multiple outbreaks for the same pandemic: local transportation and social distancing explain the different “waves" of A-H1N1pdm cases observed in México during 2009. Math. Biosci. Eng. (MBE) 8(1), 21–48 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.M. Hyman, T. Laforce, Modeling the spread of influenza among cities, Biomathematical Modeling Applications for Homeland Security (Society for Industrial and Applied Mathematics, Philadephia, 2003), pp. 215–240

    Google Scholar 

  38. W.O. Kermack, A.G. McKendrick, Contributions to the mathematical theory of epidemics. Proc. R. Soc. Lond. 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  39. W.O. Kermack, A.G. McKendrick, Contributions to the mathematical theory of epidemics III. Further studies of the problem of endemicity. Bull. Math. Biol. 53(1), 89–118 (1991)

    MATH  Google Scholar 

  40. K. Khan, J. Arino, W. Hu, P. Raposo, J. Sears, F. Calderon, C. Heidebrecht, M. Macdonald, J. Liauw, A. Chan et al., Spread of a novel influenza A (H1N1) virus via global airline transportation. N. Engl. J. Med. 361(2), 212 (2009)

    Article  Google Scholar 

  41. C.D. Kozul, K.H. Ely, R.I. Enelow, J.W. Hamilton, Low-dose arsenic compromises the immune response to influenza a infection in vivo. Environ. Health Perspect. PubMed 117(9), 1441–1447 (2009)

    Article  Google Scholar 

  42. B.Y. Lee, S.T. Brown, P. Cooley, J.J. Grefenstette, R.K. Zimmerman, S.M. Zimmer, M.A. Potter, R. Rosenfeld, W.D. Wheaton, A.E. Wiringa et al., Vaccination deep into a pandemic wave: potential mechanisms for a “third wave” and the impact of vaccination. Am. J. Prev. Med. 39(5), e21–e29 (2010)

    Article  Google Scholar 

  43. V.J. Lee, G.G. Fernandez, M.I. Chen, D. Lye, Y.S. Leo, Influenza and the pandemic threat. Singap. Med. J. 47(6), 463–470 (2006)

    Google Scholar 

  44. F. Libenson, Llegaron al Edomex 66 mil vacunas contra AH1N1 (2009). http://elinformantemexico.com/index.php/noticias/llegaron-al-edomex-66-mil-vacunas-contra-ah1n1-franklin-libenson-violante.html

  45. I.M. Longini Jr., A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D.A.T. Cummings, M.E. Halloran, Containing pandemic influenza at the source. Science 309(5737), 1083–1087 (2005)

    Article  Google Scholar 

  46. Macroepidemiology of Influenza Vaccination Study Group. The Macro-epidemiology of influenza vaccination in 56 countries, 1997–2003. Vaccine 23(44), 5133–5143 (2005)

    Google Scholar 

  47. M.A. Miller, C. Viboud, M. Balinska, L. Simonsen, The signature features of influenza pandemics-implications for policy. N. Engl. J. Med. 360(25), 2595 (2009)

    Article  Google Scholar 

  48. A.S. Monto, J.S. Koopman, I.M. Longini Jr., Tecumseh study of illness. XIII. Influenza infection and disease, 1976–1981. Am. J. Epidemiol. 121(6), 811–822 (1985)

    Google Scholar 

  49. M.R. Moser, T.R. Bender, H.S. Margolis, G.R. Noble, A.P. Kendal, D.G. Ritter, An outbreak of influenza aboard a commercial airliner. Am. J. Epidemiol. 110(1), 1 (1979)

    Google Scholar 

  50. K.L. Nichol, Efficacy and effectiveness of influenza vaccination. Vaccine 26, D17–D22 (2008)

    Article  Google Scholar 

  51. North American transportation statistics database (2014). http://nats.sct.gob.mx/nats/sys/index.jsp?i=3

  52. M. Nuño, G. Chowell, A.B. Gumel, Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: scenarios for the US, UK and the Netherlands. J. R. Soc. Interface 4(14), 505 (2007)

    Article  Google Scholar 

  53. M. Nuño, G. Chowell, X. Wang, C. Castillo-Chavez, On the role of cross-immunity and vaccines on the survival of less fit flu-strains. Theor. Popul. Biol. 71(1), 20–29 (2007)

    Article  MATH  Google Scholar 

  54. Oliver Wyman Group and Program for Appropriate Technology in Health. Influenza vaccine strategies for broad global access, key findings and project methodology (2007)

    Google Scholar 

  55. H. Oshitani, T. Kamigaki, A. Suzuki, Major issues and challenges of influenza pandemic preparedness in developing countries. Emerg. Infect. Dis. 14(6), 875–880 (2008)

    Article  Google Scholar 

  56. M.T. Osterholm, Preparing for the next pandemic. N. Engl. J. Med. 352(18), 1839–1842 (2005)

    Article  Google Scholar 

  57. Peterborough County-City Health Unit. Pandemic Influenza Plan, Annex A: Mass Vaccination Plan (2010)

    Google Scholar 

  58. F.B. Phillips, J.P. Williamson, Local health department applies incident management system for successful mass influenza clinics. J. Public Health Manag. Pract. 11(4), 269 (2005)

    Article  Google Scholar 

  59. J. Ramet, C. Weil-Olivier, W. Sedlak, Influenza vaccination: the pediatric perspective. Vaccine 25(5), 780–787 (2007)

    Article  Google Scholar 

  60. C.A. Russell, T.C. Jones, I.G. Barr, N.J. Cox, R.J. Garten, V. Gregory, I.D. Gust, A.W. Hampson, A.J. Hay, A.C. Hurt et al., Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses. Vaccine 26, D31–D34 (2008)

    Article  Google Scholar 

  61. L.A. Rvachev, I.M. Longini Jr., A mathematical model for the global spread of influenza. Math. Biosci. 75(1), 3–22 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  62. K. Stohr, M. Esveld, Will vaccines be available for the next influenza pandemic? Science 306(5705), 2195–2196 (2004)

    Article  Google Scholar 

  63. W.W. Thompson, D.K. Shay, E. Weintraub, L. Brammer, N. Cox, L.J. Anderson, K. Fukuda, Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA: J. Am. Med. Assoc. 289(2), 179 (2003)

    Article  Google Scholar 

  64. U.S. Census Bureau. International data base (IDB). Accessed March 2011

    Google Scholar 

  65. B. Valadez, Aplicadas solo 10% de las dosis contra el AH1N1 SSA (2009). http://www.milenio.com/node/368812

  66. C. Viboud, T. Tam, D. Fleming, A. Handel, M.A. Miller, L. Simonsen, Transmissibility and mortality impact of epidemic and pandemic influenza, with emphasis on the unusually deadly 1951 epidemic. Vaccine 24(44–46), 6701–6707 (2006)

    Article  Google Scholar 

  67. M. Washington, Evaluating the capability and cost of a mass influenza and pneumococcal vaccination clinic via computer simulation. Med. Decis. Mak. 29(4), 414–423 (2009)

    Article  Google Scholar 

  68. Wikipedia. World population 1800–2100 (2010). http://en.wikipedia.org/wiki/file:world-population-1800-2100.png

  69. Wikipedia. List of countries by population. http://en.wikipedia.org/wiki/list_of_countries_by_population. Accessed 7 Mar 2011

  70. World Health Organization. WHO guidelines on the use of vaccines and antivirals during influenza pandemics (2004). www.who.int/entity/csr/resources/publications/influenza/11_29_01_a.pdf

  71. World Health Organization. Strengthening pandemic influenza preparedness and response (2005). www.who.int/csr/disease/influenza/a58_13-en.pdf

  72. World Health Organization. Pandemic influenza preparedness and response (2009). http://whqlibdoc.who.int/publications/2009/9789241547680_eng.pdf

  73. Y. Yang, J.D. Sugimoto, M.E. Halloran, N.E. Basta, D.L. Chao, L. Matrajt, G. Potter, E. Kenah, I.M. Longini Jr., The transmissibility and control of pandemic influenza A (H1N1) virus. Science 326(5953), 729 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank the organizers of the Mathematical Biology session at the AWM Research Symposium for inviting me to give a talk: Dr. Erika T. Camacho and Dr. Talitha Washington. Also, I would like to thank my collaborators in the work presented at the symposium and summarize in this article Dr. Marco A. Herrera-Valdez, Dr. Erin C. McKiernan and Dr. Carlos Castillo Chavez for their support and their valuable discussions and feedback. Last but not least, thanks to my Figure 1 model register nurse Iris Aldecoa from Scottsdale Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayteé Cruz-Aponte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cruz-Aponte, M. (2016). Metapopulation and Non-proportional Vaccination Models Overview. In: Letzter, G., et al. Advances in the Mathematical Sciences. Association for Women in Mathematics Series, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-34139-2_8

Download citation

Publish with us

Policies and ethics