Skip to main content

Molecular Markers for the Identification and Diversity Analysis of Arbuscular Mycorrhizal Fungi (AMF)

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Molecular markers are the fragments of DNA sequences associated with the genome that are used to identify particular DNA sequence. Markers are very much useful in the identification of microorganisms and in determining plant microbe interactions. This chapter deals with the molecular markers used in the diagnosis of Arbuscular Mycorrhizal Fungi (AMF). Conventional methods of AMF identification and classification have been done with the spore characters such as size, colour, spore wall layer, spore-hyphal attachment and spore germination. However, the problem associated with the availability of well-trained taxonomist and the difficulties in distinguishing the minor differences in the spore wall layers mislead the identification. Nowadays, with the explosive growth of genetic research and marker development improved our knowledge on AMF identity, diversity, role in the ecosystem functioning and plant growth promotion. Molecular markers may be grouped into non-PCR and PCR based approaches. Each of them has their advantages and disadvantages. Therefore, different markers are needed for the identification of AMF. It has been reported that combining two or more genetic markers to identify or classify AMF are more reliable than using single marker. Many molecular markers are biased, as some of the primers used to detect only parts of the community and the level of taxonomic resolution in most cases are uncertain. Species-level community analyses based on rDNA regions should be feasible, but no single molecular marker or DNA barcode is yet suitable for species-level resolution of all AMF genera. Discovery of new molecular markers (DNA or non-DNA based), in the field of AMF identification and plant-AMF interactions are very much desirable.

This is a preview of subscription content, log in via an institution.

References

  • Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005;435:824–7.

    CAS  PubMed  Google Scholar 

  • Alguacil M d M, Lozano Z, Campoy MJ, Roldán A. Phosphorus fertilization management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biol Biochem. 2010;42:1114–22.

    CAS  Google Scholar 

  • Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK. Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Ann Rev Phytopathol. 2003;41:271–303.

    CAS  Google Scholar 

  • Avio L, Cristani C, Giovannetti SP. Genetic and phenotypic diversity of geographically different isolates of Glomus mosseae. Can J Microbiol. 2009;55:242–53.

    CAS  PubMed  Google Scholar 

  • Babu AG, Reddy MS. Diversity of Arbuscular mycorrhizal fungi associated with plants growing in fly ash pond and their potential role in ecological restoration. Curr Microbiol. 2011;63:273–80.

    Google Scholar 

  • Bago B, Pfeffer PE, Zipfel W, Lammers P, Shachar-Hill Y. Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. Plant Soil. 2002;244:189–97.

    CAS  Google Scholar 

  • Baldauf SL. A search for the origins of animals and fungi: comparing and combining molecular data. Am Nat. 1999;154:178–88.

    Google Scholar 

  • Barto EK, Antunes PM, Stinson K, Koch AM, Klironomos JN, Cipollini D. Differences in arbuscular mycorrhizal fungal communities associated with sugar maple seedlings in and outside of invaded garlic mustard forest patches. Biol Invasions. 2011;13:2755–62.

    Google Scholar 

  • Beaudet D, Terrat Y, Halary S, de la Providencia IE, Hijri M. Mitochondrial genome rearrangements in glomus species triggered by homologous recombination between distinct mtDNA haplotypes. Genome Biol Evol. 2013;5:1628–43.

    PubMed  PubMed Central  Google Scholar 

  • Beauregard MS, Hamel C, Nayyar A, St-Arnaud M. Long-Term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in Alfalfa. Microb Ecol. 2010;59:379–89.

    CAS  PubMed  Google Scholar 

  • Benedetto A, Magurno F, Bonfante P, Lanfranco L. Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza. 2005;15:620–7.

    CAS  PubMed  Google Scholar 

  • Borriello R, Bianciotto V, Orgiazzi A, Lumini E, Bergero R. Sequencing and comparison of the mitochondrial COI gene from isolates of Arbuscular Mycorrhizal Fungi belonging to Gigasporaceae and Glomeraceae families. Mol Phylogenet Evol. 2014;75:1–10.

    CAS  PubMed  Google Scholar 

  • Borstler B, Raab PA, Thiéry O, Morton JB, Redecker D. Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. New Phytol. 2008;180:452–65.

    PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruns TD, Fogel R, White TJ, Palmer JD. Accelerated evolution of a false-truffle from a mushroom ancestor. Nature. 1989;339:140–2.

    CAS  PubMed  Google Scholar 

  • Bruns TD, Shefferson RP. Evolutionary studies of ectomycorrhizal fungi: recent advances and future directions. Can J Bot. 2004;82:1122–32.

    CAS  Google Scholar 

  • Corradi N, Kuhn G, Sanders IR. Monophyly of b-tubulin and H+-ATPase gene variants in Glomus intraradices: consequences for molecular evolutionary studies of AMF genes. Fungal Genet Biol. 2004;41:262–73.

    CAS  PubMed  Google Scholar 

  • De la Providencia IE, Nadimi M, Beaudet D, Rodriguez Morales G, Hijri M. Detection of a transient mitochondrial DNA heteroplasmy in the progeny of crossed genetically divergent isolates of arbuscular mycorrhizal fungi. New Phytol. 2013;200:211–21.

    PubMed  Google Scholar 

  • Del Val C, Barea JM, Azcon-Aguilar C. Diversity of arbuscular mycorrhizal fungus populations in heavy metal contaminated soils. Appl Environ Microbiol. 1999;65:718–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickie IA, Fitzjohn RG. Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza. 2007;17:259–70.

    CAS  PubMed  Google Scholar 

  • Frank AB. Uber di auf werzelsymbiose beruhende Ernahrung gewisser Baume durch unterirdischeplize. Ber Dtsch Bot Ges. 1885;3:128–45.

    Google Scholar 

  • Gamper HA, Marcel GA, van der Heijden KGA. Molecular trait indicators: moving beyond phylogeny in arbuscular mycorrhizal ecology. New Phytol. 2010;185:67–82.

    CAS  PubMed  Google Scholar 

  • Gerdemann JW, Trappe JM. Endogonaceae in the pacific Northwest. Mycol Mem. 1974;5:1–76.

    Google Scholar 

  • Geue H, Hock B. Determination of Acaulospora longula and Glomus subgroup Aa in plant roots from grassland using new primers against the large subunit ribosomal DNA. Mycol Res. 2004;108:76–83.

    CAS  PubMed  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D. Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza. 2004;14:111–7.

    PubMed  Google Scholar 

  • Gomez-Leyva JF, Lara-Reyna J, Hernandez-Cuecas LV, Martinez-Soriano JP. Specific polymerase chain reaction based assay for the identification of the arbuscular mycorrhizal fungus Glomus intraradices. J Biol Sci. 2008;8:563–9.

    CAS  Google Scholar 

  • Hassan SED, Boon E, St-Arnaud M, Hijri M. Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol. 2011;20:3469–83.

    PubMed  Google Scholar 

  • Holland TC, Bowen P, Bogdanoff C, Hart MM. How distinct are arbuscular mycorrhizal fungal communities associating with grapevines? Biol Fertil Soils. 2014;50:667–74.

    Google Scholar 

  • Hovig E, Smithsorensen B, Brogger A, Borresen AL. Constant denaturant gel-electrophoresis, a modification of denaturing gradient gel-electrophoresis, in mutation detection. Mutat Res. 1991;262:63–71.

    CAS  PubMed  Google Scholar 

  • Jacquot E, Van Tuinen D, Gianinazzi S, Gianinazzi-Pearson V. Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: Amplification to the study of the impact of sewage sludge. Plant Soil. 2000;226:179–88.

    CAS  Google Scholar 

  • Jiao H, Chen Y, Lin X, Liu R. Diversity of arbuscular mycorrhizal fungi in greenhouse soils continuously planted to watermelon in North China. Mycorrhiza. 2011;21:681–8.

    PubMed  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, et al. Methods of studying soil microbial diversity. J Microbiol Meth. 2004;58:169–88.

    CAS  Google Scholar 

  • Kjoller R, Rosendahl S. Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (single stranded conformation polymorphism). Plant Soil. 2000;226:189–96.

    CAS  Google Scholar 

  • Kjoller R, Rosendahl S. Molecular diversity of Glomalean (arbuscular mycorrhizal) fungi determined as distinct Glomus specific DNA sequences from roots of field-grown peas. Mycol Res. 2003;105:1027–32.

    Google Scholar 

  • Koch AM, Antunes PM, Barto EK, Cipollini D, Mummey DL, Klironomos JN. The effects of arbuscular mycorrhizal (AM) fungal and garlic mustard introductions on native AM fungal diversity. Biol Invasions. 2011;13:1627–39.

    Google Scholar 

  • Krishnamoorthy R, Kim CG, Subramanian P, Kim KY, Selvakumar G, Sa TM. Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One. 2015;10(6), e0128784. doi:10.1371/journal.pone.0128784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamoorthy R, Kim KY, Kim CG, Sa TM. Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biol Biochem. 2014;72:1–10.

    CAS  Google Scholar 

  • Krivtsov V, Griffiths BS, Salmond R, Liddell K, Garside A, Bezginova T, et al. Some aspects of interrelations between fungi and other biota in forest soil. Mycol Res. 2004;108:933–46.

    PubMed  Google Scholar 

  • Kruger M, Walker C, Schußler A. Acaulospora brasiliensis comb. nov. and Acaulospora alpine (Glomeromycota) from upland Scotland: morphology, molecular phylogeny and DNA-based detection in roots. Mycorrhiza. 2011;21:577–87.

    PubMed  Google Scholar 

  • Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK. Potential of molecular markers in plant biotechnology. Plant Omics J. 2009;2(4):141–62.

    CAS  Google Scholar 

  • Lanfranco L, Bianciotto V, Lumini E, Souza M, Morton JB, Bonfante P. A combined morphological and molecular approach to characterize isolates of arbuscular mycorrhizal fungi in Gigaspora (Glomales). New Phytol. 2001;152:169–79.

    CAS  PubMed  Google Scholar 

  • Larsen J, Olsson PA, Jakobsen I. The use of fatty acid signatures to study mycelial interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the saprotrophic fungus Fusarium culmorum in root-free soil. Mycol Res. 1998;102:1491–6.

    CAS  Google Scholar 

  • Lee J, Lee S, Young PW. Improved PCR primers for the detection and identication of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol. 2008;65:339–49.

    CAS  PubMed  Google Scholar 

  • Lee J, Young JPW. The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol. 2009;183:200–11.

    CAS  PubMed  Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR, Aldrichwolfe L, Morton JB. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol. 2007;95:95–105.

    Google Scholar 

  • Long LK, Yao Q, Guo J, Yang RH, Huang YH, Zhu HH. Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils. Eur J Soil Biol. 2010;46:288–94.

    Google Scholar 

  • Lovelock CE, Wright SF, Nichols K. Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: an example from a tropical rain forest soil. Soil Biol Biochem. 2004;36:1009–12.

    CAS  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Pages VP, Haouy A, Gueunier M, et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature. 2011;469:58–63.

    CAS  PubMed  Google Scholar 

  • Martin-Laurent FA, Dumas-Gaudot E, Franken P, Schlichter U, Antonie JE, Gianinazzi-Pearson V, et al. Differential display reverse transcriptase polymerase chain reaction (DDRT–PCR): a new approach to detect symbiosis-related genes induced in arbuscular mycorrhiza. In: Azcon-Aguilar C, Barea JM. Mycorrhizae in sustainable system from genes to plant development. 1996. p. 195–8.

    Google Scholar 

  • Mirás-Avalos JM, Antunes PM, Koch A, Khosla K, Klironomos JN, Dunfieldd KE. The influence of tillage on the structure of rhizosphere and root-associated arbuscular mycorrhizal fungal communities. Pedobiol. 2011;54:235–41.

    Google Scholar 

  • Molitor C, Inthavong B, Sage L, Geremia RA, Mouhamadou B. Potentiality of the cox1 gene in the taxonomic resolution of soil fungi. FEMS Microbiol Lett. 2009;302:76–84.

    PubMed  Google Scholar 

  • Morton JB, Benny GL. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes). A new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon. 1990;37:471–91.

    Google Scholar 

  • Morton JB, Bentivenga SP, Bever JD. Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Can J Bot. 1995;73:25–32.

    Google Scholar 

  • Mummey DL, Rillig MC. Evaluation of LSU rRNA-gene PCR primers for analysis of arbuscular mycorrhizal fungal communities via terminal restriction fragment length polymorphism analysis. J Microbiol Meth. 2007;70:200–4.

    CAS  Google Scholar 

  • Nakatsu CH. Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci Soc Am J. 2007;71:562–71.

    CAS  Google Scholar 

  • Ngosong C, Gabriel E, Ruess L. Use of the signature fatty acid 16:1ω5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil. J Lipid. 2012; Article ID 236807. doi:10.1155/2012/236807.

  • Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E. The ITS regions a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett. 2009;296:97–101.

    CAS  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, da Silva GA. Advances in Glomeromycota taxonomy and classification. IMA Fungus. 2011;2:191–9.

    PubMed  PubMed Central  Google Scholar 

  • Oldroyd GED. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol. 2013;11:252–63.

    CAS  PubMed  Google Scholar 

  • Olsson PA, Baath E, Jakobsen I, Soderstrom B. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res. 1995;99:623–9.

    CAS  Google Scholar 

  • Patreze CM, Paulo EN, Martinelli AP, Cardoso EJB, Tsai SM. Characterization of fungal soil communities by F-RISA and arbuscular mycorrhizal fungi from Araucaria angustifolia forest soils after replanting and wildfire disturbances. Symbiosis. 2009;48:164–72.

    CAS  Google Scholar 

  • Raab PA, Brennwald A, Redecker D. Mitochondrial large ribosomal subunit sequences are homogeneous within isolates of Glomus (arbuscular mycorrhizal fungi, Glomeromycota). Mycol Res. 2005;109:1315–22.

    CAS  PubMed  Google Scholar 

  • Redecker D, Raab P. Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia. 2006;98:885–95.

    PubMed  Google Scholar 

  • Redecker D, Thierfelder H, Walker C, Werner D. Restriction analysis of PCR-amplified internal transcribed spacer of ribosomal DNA as a tool for species identification in different genera of the order Glomales. Appl Environ Microbiol. 1997;63:1756–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redecker D. Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant Soil. 2002;244:67–73.

    CAS  Google Scholar 

  • Rosendahl S. Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol. 2008;178:253–66.

    PubMed  Google Scholar 

  • Rosier CL, Hoye AT, Rillig MC. Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem. 2006;38:2205–11.

    CAS  Google Scholar 

  • Sanders IR, Alt M, Groppe K, Boller T, Wiemken A. Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol. 1995;130:419–27.

    CAS  Google Scholar 

  • Saville BJ, Kohli Y, Anderson JB. mtDNA recombination in a natural population. Proc Natl Acad Sci U S A. 1998;95:1331–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiner RP, Mihara KL. The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia. 2009;101:599–611.

    Google Scholar 

  • Schüssler A, Schwarzotta D, Walker C. A new fungal phlyum, the Glomeromycota: phylogeny and evolution. Mycol Res. 2001;105:1413–21.

    Google Scholar 

  • Schußler A, Walker C. The Glomeromycota: a species list with new families and genera. Arthur Schüßler & Christopher Walker, Gloucester. Published in December 2010 in libraries at The Royal Botanical Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. 2010. Electronic version freely available online at www.amf-phylogeny.com.

  • Schuβler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res. 2001;105:1413–21.

    Google Scholar 

  • Sheffield VC, Cox DR, Lerman LS, Myers RM. Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci. 1989;86:232–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sieverding E, Oehl F. Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. J Appl Bot Food Qual. 2006;80:69–81.

    Google Scholar 

  • Simon L, Levesque RC, Lalonde M. Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism-polymerase chain reaction. Appl Environ Microb. 1993;59:4211–5.

    CAS  Google Scholar 

  • Smith SE, Read DJ. Mycorrhizal symbiosis. London: Academic Press; 1997.

    Google Scholar 

  • Sokolski S, Dalpe Y, Piche Y. Phosphate transporter genes as reliable gene markers for the identification and discrimination of arbuscular mycorrhizal fungi in the genus glomus. Appl Environ Microb. 2011;77:1888–91.

    CAS  Google Scholar 

  • Sonjak S, Beguiristain T, Leyval C, Regvar M. Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments. Plant Soil. 2009;314:25–34.

    CAS  Google Scholar 

  • Stockinger H, Peyret-Guzzon M, Koegel S, Bouffaud M-L, Redecker D. The largest subunit of RNA polymerase II as a new marker gene to study assemblages of arbuscular mycorrhizal fungi in the field. PLoS One. 2014;9, e107783. doi:10.1371/journal.pone.0107783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturmer SL, Siqueira JO. Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza. 2011;21:255–67.

    PubMed  Google Scholar 

  • Thiery O. Molecular markers from the mitochondrial genome of arbuscular mycorrhizal fungi (Glomeromycota): evolutionary dynamics and application. University of Basel, Faculty of Science. PhD thesis 2010. University of Basel, Faculty of Science.

    Google Scholar 

  • Uibopuu A, Moora M, Saks U, Daniell T, Zobel M, Opik M. Differential effect of arbuscular mycorrhizal fungal communities from ecosystems along management gradient on the growth of forest understorey plant species. Soil Biol Biochem. 2009;41:2141–6.

    CAS  Google Scholar 

  • Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P. Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantean growing in a polluted soil in Northern Italy. Environ Microb. 2006;8:971–83.

    Google Scholar 

  • Van Aarle IM, Cavagnaro TR, Smith SE, Smith FA, Dickson S. Metabolic activity of Glomus intraradices in Arum – and Paris -type arbuscular mycorrhizal colonization. New Phytol. 2005;166:611–8.

    Google Scholar 

  • Van Aarle IM, Olsson PA. Fungal lipid accumulation and development of mycelial structures by two arbuscular mycorrhizal fungi. Appl Environ Microbiol. 2003;69:6762–7.

    Google Scholar 

  • Van Diepen LTA, Lilleskov EA, Pregitzer KS. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Mol Ecol. 2011;20:799–811.

    Google Scholar 

  • Verbruggen E, Van der Heijden MGA, Weedon JT, Kowalchuk GA, Roling WF. Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol. 2012;21:2341–53.

    PubMed  Google Scholar 

  • Voigt K, Wostemeyer J. Phylogeny and origin of 83 Zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1 K genes. Gene. 2003;270:113–20.

    Google Scholar 

  • Weising K, Nybom H, Wolff K, Meyer W. DNA fingerprinting in plants and fungi (ed. Arbor A). Boca Raton: CRC Press; 1995. p. 1–3.

    Google Scholar 

  • Wyss P, Bonfante P. Amplification of genomic DNA of arbuscular-mycorrhizal (AM) fungi by peR using short arbitrary primers. Mycol Res. 1993;97:1351–7.

    CAS  Google Scholar 

  • Xu J. Evolutionary genetics of fungi. Norfolk: Horizon Bioscience; 2005.

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by Tamil Nadu Agricultural University, Coimbatore and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2015R1A2A1A05001885). RK was supported by Department of Science and Technology, Science and Engineering Research Board (DST-SERB) through their National Post Doctoral Fellowship (PDF/2015/000456).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Anandham or Tongmin Sa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krishnamoorthy, R. et al. (2017). Molecular Markers for the Identification and Diversity Analysis of Arbuscular Mycorrhizal Fungi (AMF). In: Singh, B.P., Gupta, V.K. (eds) Molecular Markers in Mycology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-34106-4_8

Download citation

Publish with us

Policies and ethics