Skip to main content

Mitochondrial DNA Based Molecular Markers in Arbuscular Mycorrhizal Fungi (AMF) Research

  • Chapter
  • First Online:
Book cover Molecular Markers in Mycology

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1621 Accesses

Abstract

Arbuscular Mycorrhizal Fungi (AMF) are ecologically significant organisms for their positive interactions with the host plants. The genetics and phylogeny of this plant fungi symbiotic assemblage have long been a debated issue. Development of a suitable molecular marker is still a matter to resolve the appropriate diagnosis of these organisms that hurdles further research progress. Nuclear genome based markers are using quite often; however, proved difficult due to extreme variability. Mitochondrial DNA (mtDNA) based markers are supposed to be the alternative to nuclear DNA based markers. The use of mitochondrial large ribosomal subunit (mtLSU) and Cytochrome c oxidase (cox1) have now pave a new door to investigate the AMF phylogeny. However, very recent investigations revealed many possible limitations in restoring the homogeneity within mtDNA of a single AMF isolate that needs more comprehensive study. This chapter reviews the mitochondrial DNA based molecular markers in AMF diagnosis including the promises, pitfalls and project areas for future development in the field of AMF research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Beaudet D, de la Providencia IE, Labridy M, Roy-Bolduc A, Daubois L, Hijri M. Intraisolate mitochondrial genetic polymorphism and gene variants coexpression in arbuscular mycorrhizal fungi. Genome Biol Evol. 2015;7(1):218–27.

    Article  Google Scholar 

  • Beaudet D, Terrat Y, Halary S, de la Providencia IE, Hijri M. Mitochondrial genome rearrangements in Glomus species triggered by homologous recombination between distinct mtDNA haplotypes. Genome Biol Evol. 2013a;5(9):1628–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beaudet D, Nadimi M, Iffis B, Hijri M. Rapid mitochondrial genome evolution through invasion of mobile elements in two closely related species of arbuscular mycorrhizal fungi. PLoS One. 2013b;8(4), e60768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borriello R. Arbuscular mycorrhizal fungal diversity in agricultural and natural ecosystem soils. In: Looking for new molecular tools and targets for AM fungal characterization, Università degli Studi di Torino, Torino (PhD Thesis); 2010.

    Google Scholar 

  • Börstler B, Raab PA, Thiéry O, Morton JB, Redecker D. Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. New Phytol. 2008;180(2):452–65.

    Article  PubMed  Google Scholar 

  • Bruns TD, Szaro TM, Gardes M, Cullings KW, Pan JJ, Taylor DL, Horton TR, Kretzer A, Garbelotto M, Li Y. A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis. Mol Ecol. 1998;7:257–72.

    Article  CAS  Google Scholar 

  • Capaldi RA, Malatesta F, Darley-Usmar VM. Structure of cytochrome c oxidase. Biochim Biophys Acta. 1983;726:135–48.

    Article  CAS  PubMed  Google Scholar 

  • Chevalier BS, Stoddard BL. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res. 2001;29:3757–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapp JP, Fitter AH, Young JPW. Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus, Scutellospora sp. Mol Ecol. 1999;8:915–21.

    Article  CAS  PubMed  Google Scholar 

  • Croll D, Corradi N, Gamper HA, Sanders IR. Multilocus genotyping of arbuscular mycorrhizal fungi and marker suitability for population genetics. New Phytol. 2008;180(3):564–8.

    Article  CAS  PubMed  Google Scholar 

  • Damon C, Barroso G, Férandon C, Ranger J, Fraissinet-Tachet L, Marmeisse R. Performance of the cox1 gene as a marker for the study of metabolically active Pezizomycotina and Agaricomycetes fungal communities from the analysis of soil RNA. FEMS Microbiol Ecol. 2010;74(3):693–705.

    Article  CAS  PubMed  Google Scholar 

  • de la Providencia IE, Nadimi M, Beaudet D, Morales GR, Hijri M. Detection of a transient mitochondrial DNA heteroplasmy in the progeny of crossed genetically divergent isolates of arbuscular mycorrhizal fungi. New Phytol. 2013;200:211–21.

    Article  PubMed  Google Scholar 

  • Engelmoer DJ, Behm JE, Toby Kiers E. Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol Ecol. 2014;23(6):1584–93.

    Article  CAS  PubMed  Google Scholar 

  • Finlay RD. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot. 2008;59:1115–26.

    Article  CAS  PubMed  Google Scholar 

  • Formey D, Molès M, Haouy A, Savelli B, Bouchez O, Bécard G, Roux C. Comparative analysis of mitochondrial genomes of Rhizophagus irregularis – syn. Glomus irregulare - reveals a polymorphism induced by variability generating elements. New Phytol. 2012;196(4):1217–27.

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara H, Sor F, Drissi R, Dinouël N, Miyakawa I, Rousset S, Viola AM. Linear mitochondrial DNAs of yeasts: frequency of occurrence and general features. Mol Cell Biol. 1993;13(4):2309–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haugen P, Wikmark OG, Vader A, Coucheron DH, Sjøttem E, Johansen SD. The recent transfer of a homing endonuclease gene. Nucleic Acids Res. 2005;33:2734–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helgason T, Watson IJ, Young JPW. Phylogeny of the Glomerales and Diversisporales (Fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences. FEMS Microbiol Lett. 2003;229:127–32.

    Article  CAS  PubMed  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333(6044):880–2.

    Article  CAS  PubMed  Google Scholar 

  • Koch AM, Kuhn G, Fontanillas P, Fumagalli L, Goudet J, Sanders IR. High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proc Natl Acad Sci U S A. 2004;101:2369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüssler A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol. 2012;193(4):970–84.

    Article  PubMed  Google Scholar 

  • Lee J, Young JPW. The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol. 2009;183:200–11.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H. Fungal community analysis by high-throughput sequencing of amplified markers – a user’s guide. New Phytol. 2013;199(1):288–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margulis L. Origin of eukaryotic cells. New Haven: Yale University Press; 1971.

    Google Scholar 

  • Melanie L, Wilde UHP, Nawrath K, Biró TTB, Bothe H. The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza. 2002;12:199–211.

    Article  Google Scholar 

  • Montes-Borrego M, Metsis M, Landa BB. Arbuscular mycorhizal fungi associated with the olive crop across the Andalusian Landscape: factors driving community differentiation. PLoS One. 2014;9(5), e96397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadimi M, Stefani FOP, Hijri M. The Mitochondrial genome of the Glomeromycete Rhizophagus sp. DAOM 213198 reveals an unusual organization consisting of two circular chromosomes. Genome Biol Evol. 2015;7(1):96–105.

    Article  Google Scholar 

  • Nadimi M, Beaudet D, Forget L, Hijri M, Lang BF. Group I intron-mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales. Mol Biol Evol. 2012;29(9):2199–210.

    Article  CAS  PubMed  Google Scholar 

  • Pelin A, Pombert JF, Salvioli A, Bonen L, Bonfante P, Corradi N. The mitochondrial genome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals two unsuspected trans-splicing events of group I introns. New Phytol. 2012;194(3):836–45.

    Article  CAS  PubMed  Google Scholar 

  • Peyret-Guzzon M, Stockinger H, Bouffaud ML, Farcy P, Wipf D, Redecker D. Arbuscular mycorrhizal fungal communities and Rhizophagus irregularis populations shift in response to short-term ploughing and fertilization in a buffer strip. Mycorrhiza. 2015. doi:10.1007/s00572-015-0644-5.

    Article  PubMed  Google Scholar 

  • Porter TM, Golding GB. Factors that affect large subunit ribosomal DNA amplicon sequencing studies of fungal communities: classification method, primer choice, and error. PLoS One. 2012;7(4), e35749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab PA, Brennwald A, Redecker D. Mitochondrial large ribosomal subunit sequences are homogeneous within isolates of Glomus (arbuscular mycorrhizal fungi, Glomeromycota). Mycol Res. 2005;109:1315–22

    Google Scholar 

  • Redecker D, Schüssler A, Stockinger H, Stürmer SL, Morton JB, Walker C. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza. 2013;23(7):515–31.

    Article  PubMed  Google Scholar 

  • Renker C, Heinrichs J, Kaldorf M, Buscot F. Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza. 2003;13:191–8.

    Article  CAS  PubMed  Google Scholar 

  • Riley R, Charron P, Idnurm A, Farinelli L, Dalpé Y, Martin F, Corradi N. Extreme diversification of the mating type–high-mobility group (MATA-HMG) gene family in a plant-associated arbuscular mycorrhizal fungus. New Phytol. 2014;201:254–68.

    Article  CAS  PubMed  Google Scholar 

  • Rosendahl S. The first glance into the Glomus genome: an ancient asexual scandal with meiosis? New Phytol. 2012;193:546–8.

    Article  CAS  PubMed  Google Scholar 

  • Sanders IR, Alt M, Groppe K, Boller T, Wiemken A. Identification of ribosomal DNA polymorphisms among and within spores of the Glomales -application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol. 1995;130:419–27.

    Article  CAS  Google Scholar 

  • Schüβler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res. 2001;105:1413–21.

    Article  Google Scholar 

  • Seifert KA, Samson RA, Dewaard JR, Houbraken J, Levesque CA, Moncalvo JM, Louis-Seize G, Hebert PD. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci U S A. 2007;104:3901–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ. Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. In: Smith SE, Read DJ, editors. Mycorrhizal symbiosis 3rd ed. London: Academic Press; 2008. p. 145–18.

    Google Scholar 

  • Thiery O, Borstler B, Ineichen K, Redecker D. Evolutionary dynamics of introns and homing endonuclease ORFs in a region of the large subunit of the mitochondrial rRNA in Glomus species (arbuscular mycorrhizal fungi, Glomeromycota). Mol Phylogenet Evol. 2010;55:599–610.

    Article  PubMed  Google Scholar 

  • Thonar C, Erb A, Jansa J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities – marker design, verification, calibration and field validation. Mol Ecol Resour. 2012;12(2):219–32.

    Article  CAS  PubMed  Google Scholar 

  • Woodson SA, Cech TR. Reverse self-splicing of the tetrahymena group I intron: implication for the directionality of splicing and for intron transposition. Cell. 1989;57(2):335–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Authors are thankful to the Department of Biotechnology, for establishment of DBT-BIF centre and DBT-state Biotech Hub in the Biological Science & Technology Division, CSIR-NEIST Jorhat, which has been used for the present book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Sarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sarma, R.K., Saikia, R., Talukdar, N.C. (2017). Mitochondrial DNA Based Molecular Markers in Arbuscular Mycorrhizal Fungi (AMF) Research. In: Singh, B.P., Gupta, V.K. (eds) Molecular Markers in Mycology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-34106-4_11

Download citation

Publish with us

Policies and ethics