Skip to main content

Uniform Lattice Estimates

  • Chapter
  • First Online:
  • 2262 Accesses

Part of the book series: Universitext ((UTX))

Abstract

One of the most popular methods for the uniform estimation of \(M \in \mathcal{M}_{Z}\) is the so-called Tsaregradskii inequality, which in fact is a special case of the characteristic function method. It can be written in the following way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Aleškevičienė, A.K. and Statulevičius, V.A. (1998). Inversion formulas in the case of a discontinuous limit law. Theory Probab. Appl. 42 (1), 1–16.

    Google Scholar 

  2. Arak, T.V. (1980). Approximation of n-fold convolutions of distributions having a non-negative characteristic functions with accompanying laws. Theory Probab. Appl. 25 (2), 221–243.

    Google Scholar 

  3. Arak, T.V. (1981). On the convergence rate in Kolmogorov’s uniform limit theorem. I. Theory Probab. Appl. 26 (2), 219–239.

    Google Scholar 

  4. Arak, T.V. (1981). On the convergence rate in Kolmogorov’s uniform limit theorem. II. Theory Probab. Appl. 26 (3), 437–451.

    Google Scholar 

  5. Arak, T.V. and Zaĭtsev, A.Yu. (1988). Uniform limit theorems for sums of independent random variables. Proc. Steklov Inst. Math. 174, 1–222.

    MathSciNet  Google Scholar 

  6. Barbour, A.D. and Čekanavičius, V. (2002). Total variation asymptotics for sums of independent integer random variables. Ann. Probab. 30, 509–545, 2002.

    Google Scholar 

  7. Barbour, A.D. and Chen, L.H.Y. (eds) (2005). An introduction to Stein’s method. IMS Lecture Note Series 4, World Scientific Press, Singapore.

    Google Scholar 

  8. Barbour, A.D. and Chen, L.H.Y. (2014). Stein’s (magic) method. arXiv:1411.1179v1 [math.PR].

    Google Scholar 

  9. Barbour, A.D. and Chryssaphinou, O. (2001). Compound Poisson approximation: a user’s guide. Ann. Appl. Prob. 11, 964–1002.

    Google Scholar 

  10. Barbour, A.D. and Hall, P. (1984). On the rate of Poisson convergence. Math. Proc. Camb. Phil. Soc. 95, 473–480.

    Google Scholar 

  11. Barbour, A.D. and Jensen, J.L. (1989). Local and tail approximations near the Poisson limit. Scand. J. Statist. 16, 75–87.

    Google Scholar 

  12. Barbour, A.D. and Nietlispach, B. (2011). Approximation by the Dickman distribution and quasi-logarithmic combinatorial structures. Electr. J. Probab. 16, 880–902.

    Google Scholar 

  13. Barbour, A.D. and Utev, S. (1998). Solving the Stein equation in compound Poisson approximation. Adv. Appl. Prob. 30, 449–475.

    Google Scholar 

  14. Barbour, A.D. and Xia, A. (1999). Poisson perturbations, ESAIM: Probab. Statist. 3, 131–150.

    Google Scholar 

  15. Barbour, A.D., Čekanavičius, V. and Xia, A. (2007). On Stein’s method and perturbations. ALEA, 3, 31–53.

    MathSciNet  MATH  Google Scholar 

  16. Barbour, A.D., Holst, L. and Janson, S. (1992). Poisson approximations. Oxford. Clarendon Press.

    MATH  Google Scholar 

  17. Bentkus, V. (2003). A new method for approximations in probability and operator theories. Lithuanian Math. J. 43, 367–388.

    Google Scholar 

  18. Bentkus, V. (2004). On Hoeffding’s inequalities. Ann. Probab. 32 (2), 1650–1673.

    Google Scholar 

  19. Bentkus, V. and Götze, F. (1997). On the lattice point problem for ellipsoids. Acta Arith. 80 (2), 101–125.

    Google Scholar 

  20. Bentkus, V. and Paulauskas, V. (2004). Optimal error estimates in operator-norm approximations of semigroups. Letters in Mathematical Physics. 68, 131–138.

    Google Scholar 

  21. Bobkov, S.G., Chistyakov, G.P. and Götze, F. (2011). Non-uniform bounds in local limit theorems in case of fractional moments I. Mathematical Methods of Statistics. 20 (3), 171–191.

    Google Scholar 

  22. Bobkov, S.G., Chistyakov, G.P. and Götze, F. (2011). Non-uniform bounds in local limit theorems in case of fractional moments II. Mathematical Methods of Statistics. 20 (4), 269–287.

    Google Scholar 

  23. Bentkus, V. and Sunklodas, J. (2007). On normal approximations to strongly mixing random fields. Publ. Math. Debrecen. 70 (3-4), 253–270.

    Google Scholar 

  24. Bergström, H. (1944). On the Central Limit Theorem. Skand. Aktuarietidskr. 27, 139–153.

    Google Scholar 

  25. Bergström, H. (1951). On asymptotic expansion of probability functions. Skand. Actuarietidskr. 1, 1–34.

    Google Scholar 

  26. Bergström, H. (1970). A comparison method for distribution functions of sums of independent and dependent random variables. Theory Probab. Appl. 15 (3), 430–457.

    Google Scholar 

  27. Borisov, I.S. and Ruzankin, P.S. (2002). Poisson approximation for expectations of unbounded functions of independent random variables. Ann. Probab. 30 (4), 1657–1680.

    Google Scholar 

  28. Borisov, I.S. and Vorozheikin, I.S. (2008). Accuracy of approximation in the Poisson theorem in terms of the χ 2-distance. Siberian Math. J. 49 (1), 5–17.

    Google Scholar 

  29. Brown, T.C. and Xia, A. (2001). Stein’s method and birth-death processes. Ann. Probab. 29, 1373–1403.

    Google Scholar 

  30. Čekanavičius, V. (1989). Approximation with accompanying distributions and asymptotic expansions I. Lithuanian Math. J. 29, 75–80.

    Google Scholar 

  31. Čekanavičius, V. (1991). An approximation of mixtures of distributions. Lithuanian Math. J. 31, 243–257.

    Google Scholar 

  32. Čekanavičius, V. (1993). Non-uniform theorems for discrete measures. Lithuanian Math. J. 33, 114–126.

    Google Scholar 

  33. Čekanavičius, V. (1995). On smoothing properties of compound Poisson distributions. Lithuanian Math. J. 35, 121–135.

    Google Scholar 

  34. Čekanavičius, V. (1997). Asymptotic expansions for compound Poisson measures. Lithuanian Math. J. 37, 426–447.

    Google Scholar 

  35. Čekanavičius, V. (1998). Estimates in total variation for convolutions of compound distributions. J. London Math. Soc. (2) 58, 748–760.

    Google Scholar 

  36. Čekanavičius, V. (1999). On compound Poisson approximations under moment restrictions. Theor. Probab. Appl. 44 (1), 74–86.

    Google Scholar 

  37. Čekanavičius, V. (2003). Infinitely divisible approximations for discrete nonlattice variables. Adv. Appl. Probab. 35 (4), 982–1006.

    Google Scholar 

  38. Čekanavičius, V. (2003). Estimates of pseudomoments via the Stein-Chen method. Acta Applicandae Mathematicae. 78, 61–71.

    Google Scholar 

  39. Čekanavičius, V. and Elijio, A. (2005). Lower-bound estimates for Poisson type approximations. Lithuanian Math. J. 45 (4), 405–423.

    Google Scholar 

  40. Čekanavičius,V. and Elijio, A. (2014). Smoothing effect of compound Poisson approximations to the distributions of weighted sums, Lithuanian Math. J. 54 (1), 35–47.

    Google Scholar 

  41. Čekanavičius, V. and Roos, B. (2004). Two-parametric compound binomial approximations. Lithuanian Math. J. 44 (4), 354–373.

    Google Scholar 

  42. Čekanavičius,V. and Roos, B. (2006). An expansion in the exponent for compound binomial approximations. Lithuanian Math. J. 46 (1), 54–91.

    Google Scholar 

  43. Čekanavičius, V. and Roos, B. (2006). Compound binomial approximations. Annals of the Institute of Stat. Math. 58 (1), 187–210.

    Google Scholar 

  44. Čekanavičius, V. and Roos, B. (2009). Poisson type approximations for the Markov binomial distribution. Stochastic Proc. Appl. 119, 190–207.

    Google Scholar 

  45. Čekanavičius, V. and Vellaisamy, P. (2015). A compound Poisson convergence theorem for sums of m-dependent variables, ALEA, Lat. Am. J. Probab. Math. Stat., 12, 765–792.

    MathSciNet  MATH  Google Scholar 

  46. Čekanavičius, V. and Wang, Y.H. (2003). Compound Poisson approximations for sums of discrete non-lattice variables. Adv. Appl. Prob. 35 (1), 228–250.

    Google Scholar 

  47. Chen, L.H.Y. (1975). Poisson approximation for dependent trials. Ann. Probab. 3, 534–545.

    Google Scholar 

  48. Chen, L.H.Y. (1998). Stein’s method: some perspectives with applications. Probability towards 2000 (Eds. L. Accardi and C. Heyde), 97–122. Lecture Notes in Statistics No. 128.

    Google Scholar 

  49. Chen, L.H.Y. and Röllin A. (2010). Stein couplings for normal approximation. arXiv:1003.6039v2 [math.PR].

    Google Scholar 

  50. Chen, L.H.Y. and Röllin A. (2013). Approximating dependent rare events. Bernoulli. 19 (4), 1243–1267.

    Article  MathSciNet  MATH  Google Scholar 

  51. Chen, L.H.Y., Goldstein, L. and Shao, Q.-M. (2011). Normal Approximation by Stein’s Method. Springer, Heidelberg.

    Book  MATH  Google Scholar 

  52. Daly, F., Lefevre, C. and Utev, S. (2012). Stein’s method and stochastic orderings. Adv. Appl. Prob. 44, 343–372.

    Google Scholar 

  53. Daly, F. (2013). Compound Poisson approximation with association or negative association via Stein’s method. Electronic Communications in Probability 18 (30), 1–12.

    Google Scholar 

  54. Deheuvels, P. and Pfeifer, D. (1988). On a relationship between Uspensky’s theorem and Poisson approximations. Annals of the Institute of Stat. Math. 40, 671–681.

    Google Scholar 

  55. Elijio, A. and Čekanavičius, V. (2015). Compound Poisson approximation to weighted sums of symmetric discrete variables, Ann. Inst. Stat. Math. 67, 195–210.

    Google Scholar 

  56. Eliseeva, Yu. S. and Zaitsev, A. Yu. (2012). Estimates for the concentration function of weighted sums of independent random variables. Theory Probab. Appl. 57, 768–777.

    Google Scholar 

  57. Eliseeva, Yu. S. and Zaitsev, A. Yu. (2014). On the Littlewood-Offord problem. Probability and statistics. Part 21, Zap. Nauchn. Sem. POMI. 431, 72–81. (In Russian).

    Google Scholar 

  58. Eliseeva, Yu. S., Götze, F. and Zaitsev, A. Yu. (2015). Estimates for the concentration functions in the Littlewood-Offord problem. Journal of Mathematical Sciences. 206 (2), 146–158.

    Google Scholar 

  59. Esseen, C. G. (1945). Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law. Acta. Math. 77, 1–125.

    Google Scholar 

  60. Fan, X., Grama, I. and Liu, Q. (2015). Sharp large deviation results for sums of independent random variables. Sci. China Math. 58 (9), 1939–1958.

    Google Scholar 

  61. Formanov, Sh.K. (2002). The Stein-Tikhomirov method and a nonclassical central limit theorem. Mathematical Notes. 71 (4), 550–555.

    Google Scholar 

  62. Formanov, Sh.K. (2007). On the Stein-Tikhomirov method and its applications in nonclassical limit theorems. Discrete Mathematics and Applications. 17 (1), 23–36.

    Google Scholar 

  63. Franken, P. (1964). Approximation der Verteilungen von Summen unabhängiger nichtnegativen ganzzahliger Zufallsgrösen durch Poissonsche Verteilungen. Math. Nachr. 27, 303–340.

    Google Scholar 

  64. Gamkrelidze, N.G. (1982). On the smoothing of probabilities for the sums of integer valued random variables. Theor. Probab. Appl. 26 (4), 823–828.

    Google Scholar 

  65. Gaponova, M.O. and Shevtsova, I. G. (2009). Asymptotic estimates of the absolute constant in the Berry-Esseen inequality for distributions with unbounded third moment. Inform. Primen. 3 (4), 41–56 (In Russian).

    Google Scholar 

  66. Goldstein, L. and Reinert, G. (1997). Stein’s method and the zero bias transformation with applications to simple random sampling. Annals Appl. Probab. 7, 935–952.

    Google Scholar 

  67. Götze, F. and Zaĭtsev, A.Yu. (2006). Approximation of convolutions by accompanying laws without centering. J. Math. Sciences. 137 (1), 4510–4515.

    Google Scholar 

  68. Grigelionis, B. (1999). Asymptotic expansions in the compound Poisson limit theorem. Acta Applicandae Mathematicae. 58, 125–134.

    Google Scholar 

  69. Heinrich, L. (1982). Factorization of the characteristic function of a sum of dependent random variables. Lithuanian Math. J. 22 (1), 92–100.

    Google Scholar 

  70. Heinrich, L. (1982). A method for the derivation of limit theorems for sums of m-dependent random variables. Z. Wahrscheinlichkeitstheorie verw. Gebiete. 60, 501–515.

    Google Scholar 

  71. Heinrich, L. (1982). Infinitely divisible distributions as limit laws for sums of random variables connected in a Markov chain. Math. Nachr. 107, 103–121.

    Google Scholar 

  72. Heinrich, L. (1985). Some estimates of the cumulant-generating function of a sum of m-dependent random vectors and their application to large deviations. Math. Nachr. 120, 91–101.

    Google Scholar 

  73. Heinrich, L. (1987). A method for the derivation of limit theorems for sums of weakly dependent random variables: a survey. Optimization. 18, 715–735.

    Google Scholar 

  74. Hipp, C. (1985). Approximation of aggregate claims distributions by compound Poisson distributions. Insurance Math. Econom. 4, 227–232. Correction note: 6, 165 (1987).

    Google Scholar 

  75. Hipp, C. (1986). Improved approximations for the aggregate claims distribution in the individual model. ASTIN Bull. 16, 89–100.

    Google Scholar 

  76. Hsiu, K.T. and Chuen, T.S. (2009). Variance inequalities using first derivatives. Statist. Probab. Lett. 779, 1277–1281.

    Google Scholar 

  77. Hwang, H.-K. (1999). Asymptotics of Poisson approximation to random discrete distributions: an analytic approach. Adv. Appl. Prob. 31, 448–491.

    Google Scholar 

  78. Hwang, H.-K. and Janson, S. (2008). Local limit theorems for finite and infinite urn models. Annals of Probability. 36 (3), 992–1022.

    Google Scholar 

  79. Ibragimov, I.A. and Linnik Yu.V. (1971). Independent and stationary sequences of random variables. Groningen: Wolters-Noordhoff.

    MATH  Google Scholar 

  80. Ibragimov, I.A. and Presman, E.L. (1974). On the rate of approach of the distributions of sums of independent random variables to accompanying distributions. Theory Probab. Appl. 18 (4), 713–727.

    Google Scholar 

  81. Ibragimov, R. and Sharakhmetov, Sh. (2002). The exact constant in the Rosenthal inequality for random variables with mean zero. Theory Probab. Appl. 46 (1), 127–132.

    Google Scholar 

  82. Ito, K. et al. (2000). Encyclopedic Dictionary of Mathematics: The Mathematical Society of Japan. 1. 2nd ed. The MIT Press.

    Google Scholar 

  83. Karymov, D.N. (2004). On the accuracy of approximation in the Poisson limit theorem. Discrete Mathematics and Applications. 14 (3), 317–327.

    Google Scholar 

  84. Kerstan, J. (1964). Verallgemeinerung eines Satzes von Prochorow und Le Cam. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, 173–179.

    Google Scholar 

  85. Kolmogorov, A.N. (1956). Two uniform limit theorems for sums of independent random variables. Theory Probab. Appl. 1, 384–394.

    Google Scholar 

  86. Korolev, V. and Shevtsova, I. (2012). An upper estimate for the absolute constant in the Berry-Esseen inequality. Theory Probab. Appl. 54 (4), 638–658.

    Google Scholar 

  87. Korolev, V. and Shevtsova, I. (2012). An improvement of the Berry-Esseen inequality with applications to Poisson and mixed Poisson random sums. Scandinavian Actuarial J. 2, 81–105.

    Google Scholar 

  88. Kruopis, J. (1986a). Precision of approximations of the generalized binomial distribution by convolutions of Poisson measures. Lithuanian Math. J. 26, 37–49.

    Google Scholar 

  89. Kruopis, J. (1986b). Approximations for distributions of sums of lattice random variables I. Lithuanian Math. J. 26, 234–244.

    Google Scholar 

  90. Kruopis, J. and Čekanavičius, V. (2014). Compound Poisson approximations for symmetric vectors. J. Multivar. Analysis 123, 30–42.

    Google Scholar 

  91. Le Cam, L. (1960). An approximation theorem for the Poisson binomial distribution. Pacifc J. Math. 10, 1181–1197.

    Google Scholar 

  92. Le Cam, L. (1965). On the distribution of sums of independent random variables. In: Bernoulli, Bayes, Laplace (Anniversary volume). Springer-Verlag, Berlin, Heidelberg, New York. 179–202.

    Google Scholar 

  93. Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer-Verlag, New York.

    Google Scholar 

  94. Ley, C. and Swan, Y. (2013). Stein’s density approach and information inequalities. Electronic Communications in Probability. 18, 1–14.

    Google Scholar 

  95. Ley, C. and Swan, Y. (2013). Local Pinsker inequalities via Stein’s discrete density approach. IEEE Transactions on Information Theory. 59 (9), 5584–5591.

    Google Scholar 

  96. Lindvall, T. (1992). Lectures on the coupling method. Wiley, New York.

    MATH  Google Scholar 

  97. Matskyavichyus, V.K. (1984). A lower bound for the convergence rates in the central limit theorem. Theory Probab. Appl. 28 (3), 596–601.

    Google Scholar 

  98. Mattner, L. and Roos, B. (2007). A shorter proof of Kanter’s Bessel function concentration bound. Probab. Theory Related Fields, 139, 191–205.

    Article  MathSciNet  MATH  Google Scholar 

  99. Michel, R. (1987). An improved error bound for the compound Poisson approximation of a nearly homogeneous portfolio. ASTIN Bull. 17, 165–169.

    Google Scholar 

  100. Nagaev, S.V. and Chebotarev, V.I. (2011). On estimation of closeness of binomial and normal distributions. Theor. Probab. Appl. 56 (2), 213–239.

    Google Scholar 

  101. Nourdin, I. and Peccati, G. (2012). Normal Approximations with Malliavin Calculus. From Stein’s Method to Universality. Cambridge Tracts in Mathematics No. 192.

    Google Scholar 

  102. Paulauskas, V. (1969). On the reinforcement of the Lyapunov theorem. Litovsk. Matem. Sb. 9 (2), 323–328 (in Russian).

    Google Scholar 

  103. Petrauskienė, J. and Čekanavičius, V. (2010). Compound Poisson approximations for sums of one-dependent random variables I. Lithuanian Math. J., 50 (3), 323–336.

    Article  MATH  Google Scholar 

  104. Petrauskienė, J. and Čekanavičius, V. (2011). Compound Poisson approximations for sums of one-dependent random variables II. Lithuanian Math. J., 51 (1), 51–65.

    Article  MATH  Google Scholar 

  105. Petrov, V.V. (1975). Sums of independent random variables. Springer-Verlag, Berlin, Heidelberg, New York.

    Book  MATH  Google Scholar 

  106. Petrov, V.V. (1995). Limit Theorems of Probability Theory. Clarendon Press, Oxford.

    MATH  Google Scholar 

  107. Pinelis, I. (2007). Exact inequalities for sums of asymmetric random variables, with applications. Probab. Theory Relat. Fields. 139, 605–635.

    Google Scholar 

  108. Posfai, A. (2009). An extension of Mineka’s coupling inequality. Elect. Comm. in Probab. 14, 464–473.

    Google Scholar 

  109. Prawitz H. (1972). Limits for a distribution, if the characteristic function is given in a finite domain. Skand. Aktuarietidskr., 55, 138–154.

    MathSciNet  MATH  Google Scholar 

  110. Presman, É.L. (1982). Two inequalities for symmetric processes and symmetric distributions Theory Probab. Appl. 26 (4), 815–819.

    Google Scholar 

  111. Presman, É.L. (1983). Approximation of binomial distributions by infinitely divisible ones. Theory Probab. Appl. 28, 393–403.

    Google Scholar 

  112. Presman, É.L. (1986). Approximation in variation of the distribution of a sum of independent Bernoulli variables with a Poisson law. Theory Probab. Appl. 30, 417–422.

    Google Scholar 

  113. Prohorov, Yu.V. (1953). Asymptotic behaviour of the binomial distribution. (Russian), Uspekhi Matem. Nauk. 8, 3, 135–142. Engl. transl. in Select. Transl. Math. Statist. and Probability. 1, 87–95 (1961).

    Google Scholar 

  114. Rachev, S.T. (1991) Probability metrics and the stability of stochastic models. Wiley, Chichester-New York-Brisbane-Toronto-Singapore.

    MATH  Google Scholar 

  115. Rachev, S.T, Stoyanov, S.V. and Fabozzi, F.J. (2011). A probability metrics approach to financial risk measures. Wiley-Blackwell.

    Google Scholar 

  116. Rachev, S.T, Klebanov, L.B., Stoyanov, S.V. and Fabozzi, F.J. (2013). The methods of distances in the Theory of Probability and Statistics. Springer, New York-Heidelberg-Dordrecht-London.

    Book  MATH  Google Scholar 

  117. Rinott, Y. and Rotar, V. (2000). Normal approximations by Stein’s method. Decisions in Economics and Finance. 23, 15–29.

    Google Scholar 

  118. Roos, B. (1999). On the rate of multivariate Poisson convergence. J. Multivar. Analysis 69, 120–134.

    Google Scholar 

  119. Roos, B. (1999). Asymptotics and sharp bounds in the Poisson approximation to the Poisson binomial distribution. Bernoulli 5 (6), 1021–1034.

    Google Scholar 

  120. Roos, B. (2000). Binomial approximation to the Poisson binomial distribution: The Krawtchouk expansion, Theory Probab. Appl. 45, 258–272.

    Google Scholar 

  121. Roos, B. (2001). Sharp constants in the Poisson approximation, Statist. Probab. Lett. 52, 155–168.

    Google Scholar 

  122. Roos, B. (2002). Kerstan’s Method in the Multivariate Poisson Approximation: An Expansion in the Exponent. Theory Probab. Appl. 47 (2), 358–363.

    Google Scholar 

  123. Roos, B. (2003a). Kerstan’s method for compound Poisson approximation. Ann. Probab. 31, 1754–1771.

    Google Scholar 

  124. Roos, B. (2003b). Improvements in the Poisson approximation of mixed Poisson distributions. Journal of Statistical Planning and Inference. 113, 467–483.

    Google Scholar 

  125. Roos, B. (2005). On Hipps compound Poisson approximations via concentration functions. Bernoulli. 11 (3), 533–557.

    Google Scholar 

  126. Roos, B. (2010). Closeness of convolutions of probability measures. Bernoulli. 16 (1), 23–50.

    Google Scholar 

  127. Ross, N. (2011). Fundamentals of Stein’s method. Probability Surveys. 8, 210–293.

    Article  MathSciNet  MATH  Google Scholar 

  128. Ross, S.M. and Peköz, E.A. (2007). A second course in Probability. www.ProbabilityBookstore.com, Boston, MA.

    Google Scholar 

  129. Ruzankin, P.S. (2004). On the rate of Poisson process approximation to a Bernoulli process. J. Appl. Probab. 41, 271–276.

    Google Scholar 

  130. Ruzankin, P.S. (2010). Approximation for expectations of unbounded functions of dependent integer-valued random variables. J. Appl. Probab. 47, 594–600.

    Google Scholar 

  131. Röllin, A. (2005). Approximation of sums of conditionally independent variables by the translated Poisson distribution. Bernoulli. 11, 1115–1128.

    Google Scholar 

  132. Saulis, L. and Statulevičius, V.A. (1991). Limit Theorems for Large Deviations. Mathematics and its Applications 73, Kluwer Academic Publishers, Doerdrecht, Boston, London.

    Google Scholar 

  133. Sazonov, V.V. (1981). Normal Approximation – some recent advances. Lecture Notes in Mathematics 879, Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  134. Sazonov, V.V. and Ulyanov, V.V. (1982). On the accuracy of normal approximation. Journal of Multivariate Analysis. 12 (3), 371–384.

    Google Scholar 

  135. Sazonov, V.V. and Ulyanov, V.V. (1979). On the Speed of Convergence in the Central Limit Theorem. Advances Appl. Probab. 11 (2), 269–270.

    Google Scholar 

  136. Senatov, V.V. (1998). Normal Approximation new results, methods and problems. VSP BV, Utrecht.

    Book  MATH  Google Scholar 

  137. Šiaulys, J. and Čekanavičius, V. (1988). Approximation of distributions of integer-valued additive functions by discrete charges. I. Lithuanian Math. J. 28, 392–401.

    Google Scholar 

  138. Shevtsova, I.G. (2010). The lower asymptotically exact constant in the central limit theorem. Doklady Mathematics. 81 (1), 83–86.

    Google Scholar 

  139. Shevtsova, I.G. (2011). On the asymptotically exact constants in the Berry-Esseen-Katz inequality. Theory Probab. Appl. 55 (2), 225–252.

    Google Scholar 

  140. Shevtsova, I.G. (2014). On the accuracy of the normal approximation to compound Poisson distributions. Theory Probab. Appl. 58 (1), 138–158.

    Google Scholar 

  141. Shiryaev, A.N. (1995). Probability. Graduate texts in mathematics, v.95, 2nd Edition, Springer.

    Google Scholar 

  142. Statulevičius, V.A. (1965). Limit theorems for densities and asymptotic expansions of distributions of sums of independent random variables. Theory Probab. Appl. 10 (4), 582–595.

    Google Scholar 

  143. Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. of the Sixth Berkeley Symposium on Math. Stat. Probab. 2. Univ. California Press, Berkeley, 583–602.

    Google Scholar 

  144. Stein, C. (1986). Approximate computation of expectations. Institute of Mathematical Statistics, Hayward, CA.

    MATH  Google Scholar 

  145. Stein, C., Diaconis, P., Holmes, S. and Reinert, G. (2004) Use of exchangeable pairs in the analysis of simulations. In Stein’s method: expository lectures and applications. (P. Diaconis and S. Holmes, eds.). IMS Lecture Notes Mon. Ser. 46, 1–26.

    Google Scholar 

  146. Sunklodas, J. (1984). Rate of convergence in the central limit theorem for random variables with strong mixing. Lithuanian Math. J. 24 (2), 182–190.

    Google Scholar 

  147. Sunklodas, J. (1986). Estimate of the rate of convergence in the central limit theorem for weakly dependent random fields. Lithuanian Math. J. 26 (3), 272–287.

    Google Scholar 

  148. Sunklodas, J. (2009). On the rate of convergence of L p norms in the CLT for Poisson and Gamma random variables. Lithuanian Math. J. 49 (2), 216–221.

    Google Scholar 

  149. Sunklodas, J. (2012). Some estimates of normal approximation for the distribution of a sum of a random number of independent random variables. Lithuanian Math. J., 52 (3), 326–333.

    Article  MathSciNet  MATH  Google Scholar 

  150. Statulevičius, V.A. (1970). On limit theorems for random functions I. Litovsk. Matem. Sb., 10, 583–592. (In Russian).

    MathSciNet  MATH  Google Scholar 

  151. Thorisson, H. (2000). Coupling, Stationarity, and Regeneration. Springer, New York.

    Book  MATH  Google Scholar 

  152. Tikhomirov, A.N. (1981). On the convergence rate in the Central Limit Theorem for weakly dependent random variables. Theory Probab. Appl., 25 (4), 790–809.

    Article  MathSciNet  MATH  Google Scholar 

  153. Tsaregradskii, I.P. (1958). On uniform approximation of a binomial distribution by infinitely divisible laws. Theory Probab. Appl. 3 (4), 434–438.

    Google Scholar 

  154. Ulyanov, V.V. (1978) On More Precise Convergence Rate Estimates in the Central Limit Theorem. Theory Probab. Appl. 23 (3), 660–663.

    Google Scholar 

  155. Upadhye, N.S. and Vellaisamy, P. (2013). Improved bounds for approximations to compound distributions. Statist. and Probab. Lett. 83, 467–473.

    Google Scholar 

  156. Upadhye, N.S. and Vellaisamy, P. and Čekanavičius, V. (2014). On Stein operators for discrete approximations. arXiv:1406.6463v1 [math.PR] (to appear in Bernoulli).

    Google Scholar 

  157. Vellaisamy, P. and Upadhye, N.S. (2009). Compound negative binomial approximations for sums of random variables. Probab. Math. Statist. 29, 205–226.

    Google Scholar 

  158. Vellaisamy, P., Upadhye, N.S. and Čekanavičius, V. (2013). On negative binomial approximation. Theory Probab. Appl. 57 (1), 97–109.

    Google Scholar 

  159. Witte, H.-J. (1990). A unification of some approaches to Poisson approximation. J. Appl. Probab. 27, 611–621.

    Google Scholar 

  160. Xia, A. (1997). On using the first difference in the Stein-Chen method, Ann. Appl. Prob. 7, 899–916.

    Google Scholar 

  161. Yakshyavichus, Sh. (1998). On a method of expansion of the probabilities of lattice random variables. Theory Probab. Appl. 42 (2), 271–282.

    Google Scholar 

  162. Zaĭtsev, A.Yu. (1984). Use of the concentration function for estimating the uniform distance. J. Soviet. Math. 27 (5), 3059–3070.

    Google Scholar 

  163. Zaĭtsev, A.Yu. (1988). Multidimensional generalized method of triangular functions. J. Soviet Math. 43 (6), 2797–2810.

    Google Scholar 

  164. Zaĭtsev, A.Yu. (1988). Estimates for the closeness of successive convolutions of multidimensional symmetric distributions. Probab. Theor. Related Fields. 79 (2), 175–200.

    Google Scholar 

  165. Zaĭtsev, A.Yu. (1992). On the approximation of convolutions of multidimensional symmetric distributions by accompanying laws. J. Soviet. Math. 61, 1859–1872.

    Google Scholar 

  166. Zaĭtsev, A.Yu. (1999). Approximation of convolutions by accompanying laws under the existence of moments of low orders. Journal of Mathematical Sciences 93 (3), 336–340.

    Google Scholar 

  167. Zacharovas, V. and Hwang, H.-K. (2010). A Charlier-Parseval approach to Poisson approximation and its applications. Lithuanian Math. J., 50 (1), 88–119.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Čekanavičius, V. (2016). Uniform Lattice Estimates. In: Approximation Methods in Probability Theory. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-34072-2_4

Download citation

Publish with us

Policies and ethics