Advertisement

MEMS Lorentz Force Magnetometers

  • Agustín Leobardo Herrera-MayEmail author
  • Francisco López-Huerta
  • Luz Antonio Aguilera-Cortés
Chapter
  • 2.8k Downloads
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 19)

Abstract

Lorentz force magnetometers based on microelectromechanical systems (MEMS) have several advantages such as small size, low power consumption, high sensitivity, wide dynamic range, high resolution, and low cost batch fabrication. These magnetometers have potential applications in biomedicine, navigation systems, telecommunications, automotive industry, space satellites, and non-destructive testing. This chapter includes the development of MEMS magnetometers composed by resonant structures that use the Lorentz force and different signal processing techniques. In addition, it presents the operation principle, sensing techniques, fabrication processes, applications, and challenges of MEMS magnetometers. Future applications will consider the integration of magnetometers with different devices (e.g., accelerometers, gyroscopes, energy harvesting and temperature sensors) on a single chip.

Keywords

Lorentz Force Inertial Measurement Unit Wheatstone Bridge Resonant Structure Vacuum Packaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by Sandia National Laboratory’s University Alliance Program, FORDECYT-CONACYT through grant 115976, and projects PRODEP “Estudio de Dispositivos Electrónicos y Electromecánicos con Potencial Aplicación en Fisiología y Optoelectrónica” and “Sistema Electrónico de Medición de Campo Magnético Residual de Estructuras Ferromagnéticas”. The authors would like to thank Dr. Eduard Figueras of IMB-CNM (CSIC) for his collaboration into the fabrication of MEMS magnetometers and B.S. Fernando Bravo-Barrera of LAPEM for his assistance with the SEM images.

References

  1. 1.
    G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat, V.K. Aatre, Micro and Smart Systems Technology and Modeling (Wiley, Danvers, 2012)Google Scholar
  2. 2.
    S.D. Senturia, Microsystem Design (Kluwer Academic Publishers, New York, 2002)Google Scholar
  3. 3.
    A.L. Herrera-May, L.A. Aguilera-Cortés, P.J. García-Ramírez, E. Manjarrez, Resonant magnetic field sensor based on MEMS technology. Sensors 9, 7785–7813 (2009)CrossRefGoogle Scholar
  4. 4.
    O. Solgaard, A.A. Godil, R.T. Howe, L.P. Lee, Y.-A. Peter, H. Zappe, Optical MEMS: from micromirrors to complex systems. J. Microelectromech. Syst. 23, 517–538 (2014)CrossRefGoogle Scholar
  5. 5.
    D. Yamane, T. Konishi, T. Matsushima, K. Machida, H. Toshiyoshi, K. Masu, Design of sub-1 g microelectromechanical systems accelerometers. Appl. Phy. Lett. 104, 074102Ç (2014)Google Scholar
  6. 6.
    Z. Deyhim, Z. Yousefi, H.B. Ghavifekr, E.N. Aghdam, A high sensitive and robust controllable MEMS gyroscope with inherently linear control force using a high performance 2-DOF oscillator. Microsyst. Technol. 21, 227–237 (2015)CrossRefGoogle Scholar
  7. 7.
    A.L. Herrera-May, J.A. Tapia, S.M. Domínguez-Nicolás, R. Juarez-Aguirre, E.A. Gutierrez-D, A. Flores, E. Figueras, E. Manjarrez, Improved detection of magnetic signals by a MEMS sensor using stochastic resonance. PLoS ONE 9, e109534 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Kulwant, J. Robin, V. Soney, J. Akhtar, Fabrication of electron beam physical vapor deposited polysilicon piezoresistive MEMS pressure sensor. Sens. Actuators A 223, 151–158 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Liu, P. Song, J. Liu, D.J.H. Tng, R. Hu, H. Chen, Y. Hu, C.H. Tan, J. Wang, J. Liu, L. Ye, K.-T. Yong, An in-vivo evaluation of a MEMS drug delivery device using Kunming mice model. Biomed. Microdevices 17, 6 (2015)CrossRefGoogle Scholar
  10. 10.
    W. Zhenlu, S. Xuejin, C. Xiaoyang, Design, modeling, and characterization of a MEMS electrothermal microgripper. Microsyst. Technol. 21, 2307–2314 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Tai-Ran, MEMS & Microsystems. Design and Manufacture (McGraw Hill, New York, 2002)Google Scholar
  12. 12.
    S. Sedky, Post-processing Techniques for Integrated MEMS (Artech House, Norwood, 2006)Google Scholar
  13. 13.
    A.L. Herrera-May, M. Lara-Castro, F. López-Huerta, P. Gkotsis, J.-P. Raskin, E. Figueras, A MEMS-based magnetic field sensor with simple resonant structure and linear electrical response. Microelectron. Eng. 142, 12–21 (2015)CrossRefGoogle Scholar
  14. 14.
    “MEMS Packaging,” Yole Développement report. http://www.i-micronews.com/mems-sensors-report/product/mems-packaging.html
  15. 15.
    O. Tabata, T. Tsuchiya, MEMS and NEMS Simulation, in MEMS: A Practical Guide to Design, Analysis, and Applications, ed. by J.G. Korvink, O. Paul (William Andrew Inc, New York, 2006), pp. 53–186Google Scholar
  16. 16.
    F.R. Bloom, S. Bouwstra, M. Elwenspoek, J.H.J. Fluitman, Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry. J. Vac. Sci. Technol. B 10, 19–26 (1992)CrossRefGoogle Scholar
  17. 17.
    A.L. Herrera-May, L.A. Aguilera-Cortés, L. García-González, E. Figueras-Costa, Mechanical behavior of a novel resonant microstructure for magnetic applications considering the squeeze-film damping. Microsyst. Technol. 15, 259–268 (2009)CrossRefGoogle Scholar
  18. 18.
    R. Lifshit, M.L. Roukes, Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 61, 5600–5609 (2000)CrossRefGoogle Scholar
  19. 19.
    Z. Hao, A. Erbil, F. Ayazi, An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations. Sens. Actuators A 109, 156–164 (2003)CrossRefGoogle Scholar
  20. 20.
    A.L. Herrera-May, P.J. García-Ramírez, L.A. Aguilera-Cortés, J. Martínez-Castillo, A. Sauceda-Carvajal, L. García-González, E. Figueras-Costa, A resonant magnetic field microsensor with high quality factor at atmospheric pressure. J. Micromech. Microeng. 19, 15016 (2009)CrossRefGoogle Scholar
  21. 21.
    A.L. Herrera-May, P.J. García-Ramírez, L.A. Aguilera-Cortés, E. Figueras, J. Martínez-Castillo, E. Manjarrez, A. Sauceda, L. García- González, R. Juárez-Aguirre, Mechanical design and characterization of a resonant magnetic field microsensor with linear response and high resolution. Sens. Actuators A 165, 299–409 (2011)CrossRefGoogle Scholar
  22. 22.
    S.M. Dominguez-Nicolas, R. Juarez-Aguirre, P.J. Garcia-Ramirez, A.L. Herrera-May, Signal conditioning system with a 4–20 mA output for a resonant magnetic field sensor based on MEMS technology. IEEE Sens. J. 12, 935–942 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Brugger, O. Paul, Field-concentrator-based resonant magnetic sensor with integrated planar coils. J. Microelectromech. Syst. 18, 1432–1443 (2009)CrossRefGoogle Scholar
  24. 24.
    M. Li, V.T. Rouf, M.J. Thompson, D.A. Horsley, Three-axis Lorentz-force magnetic sensor for electronic compass applications. J. Microelectromech. Syst. 21, 1002–1010 (2012)CrossRefGoogle Scholar
  25. 25.
    G. Wu, D. Xu, B. Xiong, D. Feng, Y. Wang, Resonant magnetic field sensor with capacitive driving and electromagnetic induction sensing. IEEE Electron Devices Lett. 34, 459–461 (2013)CrossRefGoogle Scholar
  26. 26.
    G. Langfelder, C. Buffa, A. Frangi, A. Tocchio, E. Lasalandra, A. Longoni, Z-axis magnetometers for MEMS inertial measurement units using an industrial process. IEEE Trans. Industr. Electron. 60, 3983–3990 (2013)CrossRefGoogle Scholar
  27. 27.
    F. Keplinger, S. Kvasnica, H. Hauser, R. Grössinger, Optical readouts of cantilever bending designed for high magnetic field application. IEEE Trans. Magn. 39, 3304–3306 (2003)CrossRefGoogle Scholar
  28. 28.
    F. Keplinger, S. Kvasnica, A. Jachimowicz, F. Kohl, J. Steurer, H. Hauser, Lorentz force based magnetic field sensor with optical readout. Sens. Actuators A 110, 112–118 (2004)CrossRefGoogle Scholar
  29. 29.
    D.K. Wickenden, J.L. Champion, R. Osiander, R.B. Givens, J.L. Lamb, J.A. Miragliotta, D.A. Oursler, T.J. Kistenmacher, Micromachined polysilicon resonating xylophone bar magnetometer. Acta Astronaut. 52, 421–425 (2003)CrossRefGoogle Scholar
  30. 30.
    S.M. Domínguez-Nicolás, R. Juárez-Aguirre, A.L. Herrera-May, P.J. García-Ramírez, E. Figueras, E. Gutierrez, J.A. Tapia, A. Trejo, E. Manjarrez, Respiratory magnetogram detected with a MEMS device. Int. J. Med. Sci. 10, 1445–1450 (2013)CrossRefGoogle Scholar
  31. 31.
    R. Juárez-Aguirre, S.M. Domínguez-Nicolás, E. Manjarrez, J.A. Tapia, E. Figueras, H. Vázquez-Leal, L.A. Aguilera-Cortés, A.L. Herrera-May, Digital signal processing by virtual instrumentation of a MEMS magnetic field sensor for biomedical applications. Sensors 13, 15068–15084 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Acevedo-Mijangos, C. Soler-Balcázar, H. Vazquez-Leal, J. Martínez-Castillo, A.L. Herrera-May, Design and modeling of a novel microsensor to detect magnetic fields in two orthogonal directions. Microsyst. Technol. 19, 1897–1912 (2013)CrossRefGoogle Scholar
  33. 33.
    A. Dubov, A. Dubov, S. Kolokolnikov, Application of the metal magnetic memory method for detection of defects at the initial stage of their development for prevention of failures of power engineering welded steel structures and steam turbine parts. Weld World 58, 225–236 (2014)CrossRefGoogle Scholar
  34. 34.
    A.L. Herrera-May, L.A. Aguilera-Cortés, P.J. García-Ramírez, N.B. Mota-Carrillo, W.Y. Padrón-Hernández, E. Figueras, Development of Resonant Magnetic Field Microsensors: Challenges and Future Applications, in Microsensors, ed. by I. Minin (InTech, Croatia, 2011), pp. 65–84Google Scholar
  35. 35.
    M. Lara-Castro, A.L. Herrera-May, R. Juarez-Aguirre, F. López-Huerta, C.A. Ceron-Alvarez, I.E. Cortes-Mestizo, E.A. Morales-Gonzalez, H. Vazquez-Leal, S.M. Dominguez-Nicolas, Portable signal conditioning system of a MEMS magnetic field sensor for industrial applications. Microsyst. Technol. (2016). doi: 10.1007/s00542-016-2816-4
  36. 36.
    G. Laghi, S. Dellea, A. Longoni, P. Minotti, A. Tocchio, S. Zerbini, G. Lagfelder, Torsional MEMS magnetometer operated off-resonance for in-plane magnetic field detection. Sens. Actuators A 229, 218–226 (2015)CrossRefGoogle Scholar
  37. 37.
    C.M.N. Brigante, N. Abbate, A. Basile, A.C. Faulisi, S. Sessa, Towards miniaturization of a MEMS-based wearable motion capture system. IEEE Trans. Industr. Electron. 58, 3234–3241 (2011)CrossRefGoogle Scholar
  38. 38.
    S.P. Won, F. Golnaraghi, W.W. Melek, A fastening tool tracking system using an IMUand a position sensor with Kalman filters and a fuzzy expert system. IEEE Trans. Industr. Electron. 56, 1782–1792 (2009)CrossRefGoogle Scholar
  39. 39.
    R.N. Dean, A. Luque, Applications of microelectromechanical systems in industrial processes and services. IEEE Trans. Industr. Electron. 56, 913–925 (2009)CrossRefGoogle Scholar
  40. 40.
    H. Lamy, V. Rochus, I. Niyonzima, P. Rochus, A xylophone bar magnetometer for micro/pico satellites. Acta Astronaut. 67, 793–809 (2010)CrossRefGoogle Scholar
  41. 41.
    S. Ranvier, V. Rochus, S. Druart, H. Lamy, P. Rochus, L.A. Francis, Detection methods for MEMS-Based xylophone bar magnetometer for pico satellites. J. Mech. Eng. Autom. 1, 342–350 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Agustín Leobardo Herrera-May
    • 1
    Email author
  • Francisco López-Huerta
    • 2
  • Luz Antonio Aguilera-Cortés
    • 3
  1. 1.Micro and Nanotechnology Research CenterUniversidad VeracruzanaBoca Del RioMexico
  2. 2.Engineering FacultyUniversidad VeracruzanaBoca Del RioMexico
  3. 3.Depto. Ingeniería MecánicaDICIS, Universidad de GuanajuatoSalamancaMexico

Personalised recommendations