Skip to main content

Planar Hall Effect (PHE) Magnetometers

  • Chapter
  • First Online:
High Sensitivity Magnetometers

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 19))

Abstract

The planar Hall effect (PHE) is intimately related to the anisotropic magnetoresistance (AMR). However, while AMR-based magnetic sensors have been commercially available for decades and are widely used in a variety of applications, PHE-based sensors have been mostly the subject of research. The reason for that is most probably the superior performance that has been exhibited by the AMR sensors. In this chapter, we review the work that has been done in the field of PHE sensors with emphasis on the PHE sensors developed by the authors. The performance of these sensors exceeds the performance of commercially available AMR-based sensors and has the potential of competing even with bulkier ultra-sensitive sensors such as flux-gate and atomic magnetometers. We review the physical origin of the effect, the use of shape to tailor the magnetic anisotropy on demand and the optimization process of the fabrication details of the sensor and its amplification circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Wolf, A.Y. Chtchelkanova, D.M. Treger, Spintronics—a retrospective and perspective. IBM J. Res. Dev. 50, 101–110 (2006)

    Article  Google Scholar 

  2. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes et al., Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  Google Scholar 

  3. F.G. West, Rotating-field technique for galvanomagnetic measurements. J. Appl. Phys. 34, 1171–1173 (1963)

    Article  Google Scholar 

  4. C. Goldberg, R.E. Davis, New galvanomagnetic effect. Phys. Rev. 94, 1121–1125 (1954)

    Article  Google Scholar 

  5. T.T. Chen, V.A. Marsocci, Planar magnetoresistivity and planar hall effect measurements in nickel single-crystal thin films. Physica 59, 498–509 (1972)

    Article  Google Scholar 

  6. H.X. Tang, R.K. Kawakami, D.D. Awschalom, M.L. Roukes, Giant planar hall effect in epitaxial (Ga, Mn) as devices. Phys. Rev. Lett. 90, 107201 (2003)

    Article  Google Scholar 

  7. Y. Bason, L. Klein, J.B. Yau, X. Hong, C.H. Ahn, Giant planar hall effect in colossal magnetoresistive La0.84Sr0.16MnO3 thin films. Appl. Phys. Lett. 84, 2593–2595 (2004)

    Article  Google Scholar 

  8. X.S. Jin, R. Ramos, Y. Zhou, C. McEvoy, I.V. Shvets, Planar hall effect in magnetite (100) films. J. Appl. Phys. 99, 08C509 (2006)

    Google Scholar 

  9. A.D. Henriksen, B.T. Dalslet, D.H. Skieller, K.H. Lee, F. Okkels, M.F. Hansen, Planar hall effect bridge magnetic field sensors. Appl. Phys. Lett. 97, 013507 (2010)

    Google Scholar 

  10. A. Persson, R.S. Bejhed, F.W. Osterberg, K. Gunnarsson, H. Nguyen, G. Rizzi et al., Modelling and design of planar hall effect bridge sensors for low-frequency applications. Sens. Actuat. a-Phys. 189, 459–465 (2013)

    Article  Google Scholar 

  11. F.W. Osterberg, G. Rizzi, M.F. Hansen, On-chip measurements of Brownian relaxation of magnetic beads with diameters from 10 nm to 250 nm. J. Appl. Phys. 113, 154507 (2013)

    Google Scholar 

  12. A. Persson, R.S. Bejhed, H. Nguyen, K. Gunnarsson, B.T. Dalslet, F.W. Osterberg et al., Low-frequency noise in planar hall effect bridge sensors. Sens. Actuat. a-Phys. 171, 212–218 (2011)

    Article  Google Scholar 

  13. S.J. Oh, T.T. Le, G.W. Kim, C. Kim, Size effect on NiFe/Cu/NiFe/IrMn spin-valve structure for an array of PHR sensor element. Phys. Status Solidi A 204, 4075–4078 (2007)

    Article  Google Scholar 

  14. N.T. Thanh, K.W. Kim, O. Kim, K.H. Shin, C.G. Kim, Microbeads detection using planar hall effect in spin-valve structure. J. Magn. Magn. Mater. 316, E238–E241 (2007)

    Article  Google Scholar 

  15. B. Bajaj, N.T. Thanh, C.G. Kim, in Planar Hall Effect in Spin Valve Structure for DNA Detection Immobilized with Single Magnetic Bead. 7th IEEE Conference on Nanotechnology, vol. 1–3 (2007), pp. 1037–1040

    Google Scholar 

  16. N.T. Thanh, B.P. Rao, N.H. Duc, C. Kim, Planar hall resistance sensor for biochip application. Phys. Status Solidi A 204, 4053–4057 (2007)

    Article  Google Scholar 

  17. S. Oh, N.S. Baek, S.D. Jung, M.A. Chung, T.Q. Hung, S. Anandakumar et al., Selective binding and detection of magnetic labels using PHR sensor via photoresist micro-wells. J. Nanosci. Nanotechno. 11, 4452–4456 (2011)

    Article  Google Scholar 

  18. D.T. Bui, M.D. Tran, H.D. Nguyen, H.B. Nguyen, High-sensitivity planar hall sensor based on simple gaint magneto resistance NiFe/Cu/NiFe structure for biochip application. Adv. Nat. Sci, Nanosci. Nanotechnol. 4, 015017 (2013)

    Article  Google Scholar 

  19. M. Volmer, J. Neamtu, Micromagnetic characterization of a rotation sensor based on the planar hall effect. Phys. B 403, 350–353 (2008)

    Article  Google Scholar 

  20. M. Volmer, M. Avram, A.M. Avram, in On Manipulation and Detection of Biomolecules Using Magnetic Carriers. International Semiconductor Conference (2009), pp. 155–8

    Google Scholar 

  21. T.Q. Hung, S.J. Oh, B.D. Tu, N.H. Duc, L.V. Phong, S. AnandaKumar et al., Sensitivity dependence of the planar hall effect sensor on the free layer of the spin-valve structure. IEEE Trans. Magn. 45, 2374–2377 (2009)

    Article  Google Scholar 

  22. T.Q. Hung, J.R. Jeong, D.Y. Kim, H.D. Nguyen, C. Kim, Hybrid planar hall-magnetoresistance sensor based on tilted cross-junction. J. Phys. D Appl. Phys. 42, 055007 (2009)

    Google Scholar 

  23. B.D. Tu, L.V. Cuong, T.Q. Hung, D.T.H. Giang, T.M. Danh, N.H. Duc et al., Optimization of spin-valve structure NiFe/Cu/NiFe/IrMn for planar hall effect based biochips. IEEE Trans. Magn. 45, 2378–2382 (2009)

    Article  Google Scholar 

  24. B. Sinha, S. Anandakumar, S. Oh, C. Kim, Micro-magnetometry for susceptibility measurement of superparamagnetic single bead. Sens. Actuat. a-Phys. 182, 34–40 (2012)

    Article  Google Scholar 

  25. M. Volmer, J. Neamtu, Electrical and micromagnetic characterization of rotation sensors made from permalloy multilayered thin films. J. Magn. Magn. Mater. 322, 1631–1634 (2010)

    Article  Google Scholar 

  26. M. Volmer, J. Neamtu, Magnetic field sensors based on permalloy multilayers and nanogranular films. J. Magn. Magn. Mater. 316, E265–E268 (2007)

    Article  Google Scholar 

  27. T.Q. Hung, B.P. Rao, C. Kim, Planar hall effect in biosensor with a tilted angle of the cross-junction. J. Magn. Magn. Mater. 321, 3839–3841 (2009)

    Article  Google Scholar 

  28. Z.Q. Lu, G. Pan, Spin valves with spin-engineered domain-biasing scheme. Appl. Phys. Lett. 82, 4107–4109 (2003)

    Article  Google Scholar 

  29. B.D. Tu, L.V. Cuong, T.H.G. Do, T.M. Danh, N.H. Duc, Optimization of planar hall effect sensor for magnetic bead detection using spin-valve NiFe/Cu/NiFe/IrMn structures. J. Phys. Conf. Ser. 187, 012056 (2009)

    Google Scholar 

  30. T.Q. Hung, S. Oh, J.R. Jeong, C. Kim, Spin-valve planar hall sensor for single bead detection. Sens. Actuat. a-Phys. 157, 42–46 (2010)

    Article  Google Scholar 

  31. M. Volmer, J. Neamtu, Optimisation of spin-valve planar hall effect sensors for low field measurements. IEEE Trans. Magn. 48, 1577–1580 (2012)

    Article  Google Scholar 

  32. K.M. Chui, A.O. Adeyeye, M.H. Li, Detection of a single magnetic dot using a planar hall sensor. J. Magn. Magn. Mater. 310, E992–E993 (2007)

    Article  Google Scholar 

  33. M. Volmer, J. Neamtu, in Micromagnetic Analysis and Development of High Sensitivity Spin-valve Magnetic Sensors. 5th International Workshop on Multi-Rate Processes and Hysteresis, vol. 268 (Murphys, 2010)

    Google Scholar 

  34. C. Christides, S. Stavroyiannis, D. Niarchos, Enhanced planar hall voltage changes measured in Co/Cu multilayers and Co films with square shapes. J. Phys. Condens. Mat. 9, 7281–7290 (1997)

    Article  Google Scholar 

  35. K.M. Chui, A.O. Adeyeye, M.H. Li, Effect of seed layer on the sensitivity of exchange biased planar hall sensor. Sens. Actuat. a-Phys. 141, 282–287 (2008)

    Article  Google Scholar 

  36. T.Q. Hung, S. Oh, B. Sinha, J.R. Jeong, D.Y. Kim, C. Kim, High field-sensitivity planar hall sensor based on NiFe/Cu/IrMn trilayer structure. J. Appl. Phys. 107, 09E715 (2010)

    Google Scholar 

  37. F.W. Osterberg, G. Rizzi, T.Z.G. de la Torre, M. Stromberg, M. Stromme, P. Svedlindh et al., Measurements of Brownian relaxation of magnetic nanobeads using planar hall effect bridge sensors. Biosens. Bioelectron. 40, 147–152 (2013)

    Article  Google Scholar 

  38. S. Oh, S. Anandakumar, C. Lee, K.W. Kim, B. Lim, C. Kim, Analytes kinetics in lateral flow membrane analyzed by cTnI monitoring using magnetic method. Sens. Actuat. B-Chem. 160, 747–752 (2011)

    Article  Google Scholar 

  39. S. Oh, P.B. Patil, T.Q. Hung, B. Lim, M. Takahashi, D.Y. Kim et al., Hybrid AMR/PHR ring sensor. Solid State Commun. 151, 1248–1251 (2011)

    Article  Google Scholar 

  40. F. Qejvanaj, M. Zubair, A. Persson, S.M. Mohseni, V. Fallahi, S.R. Sani et al., Thick double-biased IrMn/NiFe/IrMn planar hall effect bridge sensors. Magn. IEEE Trans. 50, 1–4 (2014)

    Article  Google Scholar 

  41. F.W. Osterberg, A.D. Henriksen, G. Rizzi, M.F. Hansen, Comment on “Planar Hall resistance ring sensor based on NiFe/Cu/IrMn trilayer structure” [J. Appl. Phys. 113, 063903 (2013)], J. Appl. Phys. 114 (2013)

    Google Scholar 

  42. B. Sinha, T. Quang Hung, T. Sri Ramulu, S. Oh, K. Kim, D.-Y. Kim, et al., Planar hall resistance ring sensor based on NiFe/Cu/IrMn trilayer structure. J. Appl. Phys. 113, 063903 (2013)

    Google Scholar 

  43. V. Mor, M. Schultz, O. Sinwani, A. Grosz, E. Paperno, L. Klein, Planar hall effect sensors with shape-induced effective single domain behavior. J. Appl. Phys. 111, 07E519 (2012)

    Google Scholar 

  44. T. Musha, Physical background of Hooge’s α for 1/f noise. Phys. Rev. B 26, 1042–1043 (1982)

    Article  Google Scholar 

  45. M.A.M. Gijs, J.B. Giesbers, P. Beliën, J.W. van Est, J. Briaire, L.K.J. Vandamme, 1/f noise in magnetic Ni80Fe20 single layers and Ni80Fe20/Cu multilayers. J. Magn. Magn. Mater. 165, 360–362 (1997)

    Article  Google Scholar 

  46. J.A. Osborn, Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)

    Article  Google Scholar 

  47. C. Tannous, J. Gieraltowski, A Stoner-Wohlfarth model redux: static properties. Phys. B 403, 3563–3570 (2008)

    Article  Google Scholar 

  48. M.D. Donahue, D. Porter, OOMMF. http://math.nist.gov/oommf/

  49. C.C. Chang, Y.C. Chang, W.S. Chung, J.C. Wu, Z.H. Wei, M.F. Lai et al., Influences of the aspect ratio and film thickness on switching properties of elliptical permalloy elements. Magn. IEEE Trans. 41, 947–949 (2005)

    Article  Google Scholar 

  50. A. Grosz, V. Mor, E. Paperno, S. Amrusi, I. Faivinov, M. Schultz, et al., Planar hall effect sensors with subnanotesla resolution. IEEE Magn. Lett. 4, 6500104 (2013)

    Google Scholar 

  51. A. Grosz, V. Mor, S. Amrusi, I. Faivinov, E. Paperno, L. Klein, A high resolution planar hall effect magnetometer for ultra-low frequencies. IEEE Sensors J. 16, 3224–3230 (2016)

    Google Scholar 

  52. D. Grieshaber, R. MacKenzie, J. Voros, E. Reimhult, Electrochemical biosensors—sensor principles and architectures. Sens. Basel 8, 1400–1458 (2008)

    Article  Google Scholar 

  53. J.M. Kahn, R.H. Katz, K.S.J. Pister, Emerging challenges: mobile networking for smart dust. Commun. Netw. J. 2, 188–196 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaf Grosz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mor, V., Grosz, A., Klein, L. (2017). Planar Hall Effect (PHE) Magnetometers. In: Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-34070-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34070-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34068-5

  • Online ISBN: 978-3-319-34070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics