Planar Hall Effect (PHE) Magnetometers

  • Vladislav Mor
  • Asaf GroszEmail author
  • Lior Klein
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 19)


The planar Hall effect (PHE) is intimately related to the anisotropic magnetoresistance (AMR). However, while AMR-based magnetic sensors have been commercially available for decades and are widely used in a variety of applications, PHE-based sensors have been mostly the subject of research. The reason for that is most probably the superior performance that has been exhibited by the AMR sensors. In this chapter, we review the work that has been done in the field of PHE sensors with emphasis on the PHE sensors developed by the authors. The performance of these sensors exceeds the performance of commercially available AMR-based sensors and has the potential of competing even with bulkier ultra-sensitive sensors such as flux-gate and atomic magnetometers. We review the physical origin of the effect, the use of shape to tailor the magnetic anisotropy on demand and the optimization process of the fabrication details of the sensor and its amplification circuit.


Magnetic Anisotropy Easy Axis Current Noise Anisotropy Field Ferromagnetic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.A. Wolf, A.Y. Chtchelkanova, D.M. Treger, Spintronics—a retrospective and perspective. IBM J. Res. Dev. 50, 101–110 (2006)CrossRefGoogle Scholar
  2. 2.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes et al., Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)CrossRefGoogle Scholar
  3. 3.
    F.G. West, Rotating-field technique for galvanomagnetic measurements. J. Appl. Phys. 34, 1171–1173 (1963)CrossRefGoogle Scholar
  4. 4.
    C. Goldberg, R.E. Davis, New galvanomagnetic effect. Phys. Rev. 94, 1121–1125 (1954)CrossRefGoogle Scholar
  5. 5.
    T.T. Chen, V.A. Marsocci, Planar magnetoresistivity and planar hall effect measurements in nickel single-crystal thin films. Physica 59, 498–509 (1972)CrossRefGoogle Scholar
  6. 6.
    H.X. Tang, R.K. Kawakami, D.D. Awschalom, M.L. Roukes, Giant planar hall effect in epitaxial (Ga, Mn) as devices. Phys. Rev. Lett. 90, 107201 (2003)CrossRefGoogle Scholar
  7. 7.
    Y. Bason, L. Klein, J.B. Yau, X. Hong, C.H. Ahn, Giant planar hall effect in colossal magnetoresistive La0.84Sr0.16MnO3 thin films. Appl. Phys. Lett. 84, 2593–2595 (2004)CrossRefGoogle Scholar
  8. 8.
    X.S. Jin, R. Ramos, Y. Zhou, C. McEvoy, I.V. Shvets, Planar hall effect in magnetite (100) films. J. Appl. Phys. 99, 08C509 (2006)Google Scholar
  9. 9.
    A.D. Henriksen, B.T. Dalslet, D.H. Skieller, K.H. Lee, F. Okkels, M.F. Hansen, Planar hall effect bridge magnetic field sensors. Appl. Phys. Lett. 97, 013507 (2010)Google Scholar
  10. 10.
    A. Persson, R.S. Bejhed, F.W. Osterberg, K. Gunnarsson, H. Nguyen, G. Rizzi et al., Modelling and design of planar hall effect bridge sensors for low-frequency applications. Sens. Actuat. a-Phys. 189, 459–465 (2013)CrossRefGoogle Scholar
  11. 11.
    F.W. Osterberg, G. Rizzi, M.F. Hansen, On-chip measurements of Brownian relaxation of magnetic beads with diameters from 10 nm to 250 nm. J. Appl. Phys. 113, 154507 (2013)Google Scholar
  12. 12.
    A. Persson, R.S. Bejhed, H. Nguyen, K. Gunnarsson, B.T. Dalslet, F.W. Osterberg et al., Low-frequency noise in planar hall effect bridge sensors. Sens. Actuat. a-Phys. 171, 212–218 (2011)CrossRefGoogle Scholar
  13. 13.
    S.J. Oh, T.T. Le, G.W. Kim, C. Kim, Size effect on NiFe/Cu/NiFe/IrMn spin-valve structure for an array of PHR sensor element. Phys. Status Solidi A 204, 4075–4078 (2007)CrossRefGoogle Scholar
  14. 14.
    N.T. Thanh, K.W. Kim, O. Kim, K.H. Shin, C.G. Kim, Microbeads detection using planar hall effect in spin-valve structure. J. Magn. Magn. Mater. 316, E238–E241 (2007)CrossRefGoogle Scholar
  15. 15.
    B. Bajaj, N.T. Thanh, C.G. Kim, in Planar Hall Effect in Spin Valve Structure for DNA Detection Immobilized with Single Magnetic Bead. 7th IEEE Conference on Nanotechnology, vol. 1–3 (2007), pp. 1037–1040Google Scholar
  16. 16.
    N.T. Thanh, B.P. Rao, N.H. Duc, C. Kim, Planar hall resistance sensor for biochip application. Phys. Status Solidi A 204, 4053–4057 (2007)CrossRefGoogle Scholar
  17. 17.
    S. Oh, N.S. Baek, S.D. Jung, M.A. Chung, T.Q. Hung, S. Anandakumar et al., Selective binding and detection of magnetic labels using PHR sensor via photoresist micro-wells. J. Nanosci. Nanotechno. 11, 4452–4456 (2011)CrossRefGoogle Scholar
  18. 18.
    D.T. Bui, M.D. Tran, H.D. Nguyen, H.B. Nguyen, High-sensitivity planar hall sensor based on simple gaint magneto resistance NiFe/Cu/NiFe structure for biochip application. Adv. Nat. Sci, Nanosci. Nanotechnol. 4, 015017 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Volmer, J. Neamtu, Micromagnetic characterization of a rotation sensor based on the planar hall effect. Phys. B 403, 350–353 (2008)CrossRefGoogle Scholar
  20. 20.
    M. Volmer, M. Avram, A.M. Avram, in On Manipulation and Detection of Biomolecules Using Magnetic Carriers. International Semiconductor Conference (2009), pp. 155–8Google Scholar
  21. 21.
    T.Q. Hung, S.J. Oh, B.D. Tu, N.H. Duc, L.V. Phong, S. AnandaKumar et al., Sensitivity dependence of the planar hall effect sensor on the free layer of the spin-valve structure. IEEE Trans. Magn. 45, 2374–2377 (2009)CrossRefGoogle Scholar
  22. 22.
    T.Q. Hung, J.R. Jeong, D.Y. Kim, H.D. Nguyen, C. Kim, Hybrid planar hall-magnetoresistance sensor based on tilted cross-junction. J. Phys. D Appl. Phys. 42, 055007 (2009)Google Scholar
  23. 23.
    B.D. Tu, L.V. Cuong, T.Q. Hung, D.T.H. Giang, T.M. Danh, N.H. Duc et al., Optimization of spin-valve structure NiFe/Cu/NiFe/IrMn for planar hall effect based biochips. IEEE Trans. Magn. 45, 2378–2382 (2009)CrossRefGoogle Scholar
  24. 24.
    B. Sinha, S. Anandakumar, S. Oh, C. Kim, Micro-magnetometry for susceptibility measurement of superparamagnetic single bead. Sens. Actuat. a-Phys. 182, 34–40 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Volmer, J. Neamtu, Electrical and micromagnetic characterization of rotation sensors made from permalloy multilayered thin films. J. Magn. Magn. Mater. 322, 1631–1634 (2010)CrossRefGoogle Scholar
  26. 26.
    M. Volmer, J. Neamtu, Magnetic field sensors based on permalloy multilayers and nanogranular films. J. Magn. Magn. Mater. 316, E265–E268 (2007)CrossRefGoogle Scholar
  27. 27.
    T.Q. Hung, B.P. Rao, C. Kim, Planar hall effect in biosensor with a tilted angle of the cross-junction. J. Magn. Magn. Mater. 321, 3839–3841 (2009)CrossRefGoogle Scholar
  28. 28.
    Z.Q. Lu, G. Pan, Spin valves with spin-engineered domain-biasing scheme. Appl. Phys. Lett. 82, 4107–4109 (2003)CrossRefGoogle Scholar
  29. 29.
    B.D. Tu, L.V. Cuong, T.H.G. Do, T.M. Danh, N.H. Duc, Optimization of planar hall effect sensor for magnetic bead detection using spin-valve NiFe/Cu/NiFe/IrMn structures. J. Phys. Conf. Ser. 187, 012056 (2009)Google Scholar
  30. 30.
    T.Q. Hung, S. Oh, J.R. Jeong, C. Kim, Spin-valve planar hall sensor for single bead detection. Sens. Actuat. a-Phys. 157, 42–46 (2010)CrossRefGoogle Scholar
  31. 31.
    M. Volmer, J. Neamtu, Optimisation of spin-valve planar hall effect sensors for low field measurements. IEEE Trans. Magn. 48, 1577–1580 (2012)CrossRefGoogle Scholar
  32. 32.
    K.M. Chui, A.O. Adeyeye, M.H. Li, Detection of a single magnetic dot using a planar hall sensor. J. Magn. Magn. Mater. 310, E992–E993 (2007)CrossRefGoogle Scholar
  33. 33.
    M. Volmer, J. Neamtu, in Micromagnetic Analysis and Development of High Sensitivity Spin-valve Magnetic Sensors. 5th International Workshop on Multi-Rate Processes and Hysteresis, vol. 268 (Murphys, 2010)Google Scholar
  34. 34.
    C. Christides, S. Stavroyiannis, D. Niarchos, Enhanced planar hall voltage changes measured in Co/Cu multilayers and Co films with square shapes. J. Phys. Condens. Mat. 9, 7281–7290 (1997)CrossRefGoogle Scholar
  35. 35.
    K.M. Chui, A.O. Adeyeye, M.H. Li, Effect of seed layer on the sensitivity of exchange biased planar hall sensor. Sens. Actuat. a-Phys. 141, 282–287 (2008)CrossRefGoogle Scholar
  36. 36.
    T.Q. Hung, S. Oh, B. Sinha, J.R. Jeong, D.Y. Kim, C. Kim, High field-sensitivity planar hall sensor based on NiFe/Cu/IrMn trilayer structure. J. Appl. Phys. 107, 09E715 (2010)Google Scholar
  37. 37.
    F.W. Osterberg, G. Rizzi, T.Z.G. de la Torre, M. Stromberg, M. Stromme, P. Svedlindh et al., Measurements of Brownian relaxation of magnetic nanobeads using planar hall effect bridge sensors. Biosens. Bioelectron. 40, 147–152 (2013)CrossRefGoogle Scholar
  38. 38.
    S. Oh, S. Anandakumar, C. Lee, K.W. Kim, B. Lim, C. Kim, Analytes kinetics in lateral flow membrane analyzed by cTnI monitoring using magnetic method. Sens. Actuat. B-Chem. 160, 747–752 (2011)CrossRefGoogle Scholar
  39. 39.
    S. Oh, P.B. Patil, T.Q. Hung, B. Lim, M. Takahashi, D.Y. Kim et al., Hybrid AMR/PHR ring sensor. Solid State Commun. 151, 1248–1251 (2011)CrossRefGoogle Scholar
  40. 40.
    F. Qejvanaj, M. Zubair, A. Persson, S.M. Mohseni, V. Fallahi, S.R. Sani et al., Thick double-biased IrMn/NiFe/IrMn planar hall effect bridge sensors. Magn. IEEE Trans. 50, 1–4 (2014)CrossRefGoogle Scholar
  41. 41.
    F.W. Osterberg, A.D. Henriksen, G. Rizzi, M.F. Hansen, Comment on “Planar Hall resistance ring sensor based on NiFe/Cu/IrMn trilayer structure” [J. Appl. Phys. 113, 063903 (2013)], J. Appl. Phys. 114 (2013)Google Scholar
  42. 42.
    B. Sinha, T. Quang Hung, T. Sri Ramulu, S. Oh, K. Kim, D.-Y. Kim, et al., Planar hall resistance ring sensor based on NiFe/Cu/IrMn trilayer structure. J. Appl. Phys. 113, 063903 (2013)Google Scholar
  43. 43.
    V. Mor, M. Schultz, O. Sinwani, A. Grosz, E. Paperno, L. Klein, Planar hall effect sensors with shape-induced effective single domain behavior. J. Appl. Phys. 111, 07E519 (2012)Google Scholar
  44. 44.
    T. Musha, Physical background of Hooge’s α for 1/f noise. Phys. Rev. B 26, 1042–1043 (1982)CrossRefGoogle Scholar
  45. 45.
    M.A.M. Gijs, J.B. Giesbers, P. Beliën, J.W. van Est, J. Briaire, L.K.J. Vandamme, 1/f noise in magnetic Ni80Fe20 single layers and Ni80Fe20/Cu multilayers. J. Magn. Magn. Mater. 165, 360–362 (1997)CrossRefGoogle Scholar
  46. 46.
    J.A. Osborn, Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)CrossRefGoogle Scholar
  47. 47.
    C. Tannous, J. Gieraltowski, A Stoner-Wohlfarth model redux: static properties. Phys. B 403, 3563–3570 (2008)CrossRefGoogle Scholar
  48. 48.
    M.D. Donahue, D. Porter, OOMMF.
  49. 49.
    C.C. Chang, Y.C. Chang, W.S. Chung, J.C. Wu, Z.H. Wei, M.F. Lai et al., Influences of the aspect ratio and film thickness on switching properties of elliptical permalloy elements. Magn. IEEE Trans. 41, 947–949 (2005)CrossRefGoogle Scholar
  50. 50.
    A. Grosz, V. Mor, E. Paperno, S. Amrusi, I. Faivinov, M. Schultz, et al., Planar hall effect sensors with subnanotesla resolution. IEEE Magn. Lett. 4, 6500104 (2013)Google Scholar
  51. 51.
    A. Grosz, V. Mor, S. Amrusi, I. Faivinov, E. Paperno, L. Klein, A high resolution planar hall effect magnetometer for ultra-low frequencies. IEEE Sensors J. 16, 3224–3230 (2016)Google Scholar
  52. 52.
    D. Grieshaber, R. MacKenzie, J. Voros, E. Reimhult, Electrochemical biosensors—sensor principles and architectures. Sens. Basel 8, 1400–1458 (2008)CrossRefGoogle Scholar
  53. 53.
    J.M. Kahn, R.H. Katz, K.S.J. Pister, Emerging challenges: mobile networking for smart dust. Commun. Netw. J. 2, 188–196 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics, Nano-Magnetism Research Center, Institute of Nanotechnology and Advanced MaterialsBar-Ilan UniversityRamat-GanIsrael
  2. 2.Department of Electrical and Computer EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations