Magnetoelectric Magnetometers

  • Mirza I. BichurinEmail author
  • Vladimir M. Petrov
  • Roman V. Petrov
  • Alexander S. Tatarenko
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 19)


Key features of magnetoelectric (ME) sensors for measuring the magnetic field, electric current and microwave power are discussed. ME sensors are shown to have advantages over semiconductor ones in the sensitivity, low price and radiation resistance. To predict the feasibility of a composite for sensor application, we propose the nomograph method based on given parameters of the composite components. The sensor sensitivity depends on the construction and the materials parameters of the ME composite and bias magnetic field. ME laminates offer opportunities for low frequency (10−2–103 Hz) detection of low magnetic fields (10−12 Tesla or below) at room temperature in a passive mode of operation. Any other magnetic sensor does not reveal such combinations of characteristics. Current sensing based on ME effect is a good choice for many applications due to galvanic isolation between the current and measuring circuit. For increasing the sensor sensitivity one needs to use the ME composite based on materials with high magnetostriction and strong piezoelectric coupling. Microwave power sensors based on composite materials have a wide frequency range up to hundreds of gigahertz, stable to significant levels of radiation, and a temperature range from 0 K to the Curie temperature. In the microwave region, it is possible to use selective properties of ME materials, that enables one to create a frequency-selective power sensor with fine-tuning.


Transmission Line Current Sensor Current Coil Magnetic Field Sensor Bias Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.I. Bichurin, D. Viehland (eds.) Magnetoelectricity in Composites (Pan Stanford Publishing, Singapore, 2012), 273 pGoogle Scholar
  2. 2.
    C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
  3. 3.
    B.D.H. Tellegen, Philips Res. Rep. 3, 81 (1948)MathSciNetGoogle Scholar
  4. 4.
    J.Y. Zhai, J.F. Li, S.X. Dong, D. Viehland, M.I. Bichurin, J. Appl. Phys. 100, 124509 (2006)CrossRefGoogle Scholar
  5. 5.
    M.I. Bichurin, V.M. Petrov, R.V. Petrov, Y.V. Kiliba, F.I. Bukashev, A.Y. Smirnov, D.N. Eliseev, Ferroelectrics 280, 199 (2002)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, J. Li, D. Viehland, Mater. Today 17, 269 (2014)CrossRefGoogle Scholar
  7. 7.
    H. Schmid, Ferroelectrics 162, 317 (1994)CrossRefGoogle Scholar
  8. 8.
    J. Van Suchtelen, Philips Res. Rep. 27, 28 (1972)Google Scholar
  9. 9.
    J. van den Boomgaard, A.M.J.G. van Run, J. van Suchtelen, Ferroelectrics 14, 727 (1976)CrossRefGoogle Scholar
  10. 10.
    M.I. Bichurin, D. Viehland, G. Srinivasan, J. Electroceram. 19, 243–250 (2007)CrossRefGoogle Scholar
  11. 11.
    D.N. Astrov, Sov. Phys. JETP 13, 729 (1961)Google Scholar
  12. 12.
    S. Dong, J. Zhai, F. Bai, J.F. Li, D. Viehland, Appl. Phys. Lett. 87, 062502 (2005)CrossRefGoogle Scholar
  13. 13.
    C.-W. Nan, G. Liu, Y. Lin, H. Chen, Phys. Rev. Lett. 94, 197203 (2005)CrossRefGoogle Scholar
  14. 14.
    S. Dong, J. Zhai, J. Li, D. Viehland, Appl. Phys. Lett. 89, 252904 (2006)CrossRefGoogle Scholar
  15. 15.
    M.I. Bichurin, V.M. Petrov, S. Priya, Magnetoelectric Multiferroic Composites (Chap. 12), in Ferroelectrics—Physical Effects, ed. by M. Lallart (InTech, 2011), p. 277Google Scholar
  16. 16.
    J. Zhai, Z. Xing, S. Dong, J. Li, D. Viehland, J. Am. Ceram. Sos. 91, 351 (2008)CrossRefGoogle Scholar
  17. 17.
    G. Harshe G, Magnetoelectric effect in piezoelectric-magnetostrictive composites. PhD thesis, The Pennsylvania State University, College Park, PA, 1991Google Scholar
  18. 18.
    M.I. Bichurin, V.M. Petrov, in Modeling of Magnetoelectric Effects in Composites, vol. 201. Springer Series in Materials Science (Springer, New York, 2014), 108pGoogle Scholar
  19. 19.
    M.I. Bichurin, V.M. Petrov, R.V. Petrov, Y.V. Kiliba, F.I. Bukashev, A.Y. Smirnov, D.N. Eliseev, Ferroelectrics 280, 365 (2002)Google Scholar
  20. 20.
    J. Gao, Y. Wang, M. Li, Y. Shen, J. Li, D. Viehland, Mater. Lett. 85, 84–87 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Clarke, R.H. Koch, The impact of high-temperature superconductivity on SQUID magnetometers. Science 242, 217–223 (1988)CrossRefGoogle Scholar
  22. 22.
    Y.J. Wang, J.Q. Gao, M.H. Li, Y. Shen, D. Hasanyan, J.F. Li, D. Viehland, Phil. Trans. R. Soc. A 372, 20120455 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Wang, D. Gray, J. Gao, D. Berry, M. Li, J. Li, D. Viehland, H. Luo, J. Alloy. Compd. 519, 1–3 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, D. Gray, D. Berry, J. Li, D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 859–862 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Wang, J. Gao, M. Li, D. Hasanyan, Y. Shen, J. Li, D. Viehland, H. Luo, Appl. Phys. Lett. 101, 022903 (2012)CrossRefGoogle Scholar
  26. 26.
    X. Zhuang, S. Saez, M. Lam Chok Sing, C. Cordier, C. Dolabdjian, J. Li, D. Viehland, S.K. Mandal, G Sreenivasulu, G. Srinivasan, Sens. Lett. 10, 961 (2012)Google Scholar
  27. 27.
    R. Jahns, H. Greve, E. Woltermann, E. Quandt, R. Knöchel, Sens. Actuators, A 183, 16 (2012)CrossRefGoogle Scholar
  28. 28.
    T. Onuta, Y. Wang, S.E. Lofland, I. Takeuchi, Adv. Mater. (2014). doi: 10.1002/adma.201402974
  29. 29.
    S. Marauska, R. Jahns, C. Kirchhof, M. Claus, E. Quandt, R. Knochel, B. Wagner, Sens. Actuators, A 189, 321 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Petrie, D. Viehland, D. Gray, S. Mandal, G. Sreenivasulu, G. Srinivasan, A.S. Edelstein, J. Appl. Phys. 111, 07C714 (2012)Google Scholar
  31. 31.
    J.R. Petrie, J. Fine, S. Mandal, G. Sreenivasulu, G. Srinivasan, A.S. Edelstein, Appl. Phys. Lett. 99, 043504 (2011)CrossRefGoogle Scholar
  32. 32.
    Y. Wang, D. Gray, D. Berry, J. Gao, M. Li, J. Li, D. Viehland, Adv. Mater. 23, 4111 (2013)CrossRefGoogle Scholar
  33. 33.
    E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knöchel, E. Quandt, D. Meyners, Nat. Mater. 11, 523 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Kirchhof, M. Krantz, I. Teliban et al., Appl. Phys. Lett. 102, 232905 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Piorra, R. Jahns, I. Teliban et al., Appl. Phys. Lett. 103, 032902 (2013)CrossRefGoogle Scholar
  36. 36.
    G. Sreenivasulu, V.M. Petrov, L.Y. Fetisov, Y.K. Fetisov, G. Srinivasan, Phys. Rev. B 86, 214405 (2012)CrossRefGoogle Scholar
  37. 37.
    T.T. Nguyen, F. Bouillault, L. Daniel, X. Mininger, Finite element modeling of magnetic field sensors based on nonlinear magnetoelectric effect. J. Appl. Phys. 109, 084904 (2011)Google Scholar
  38. 38.
    M.I. Bichurin, V.M. Petrov, R.V. Petrov, Y.V. Kiliba, F.I. Bukashev, A.Y. Smirnov, D.N. Eliseev, Ferroelectrics 280, 365 (2002)Google Scholar
  39. 39.
    S.X. Dong, J.F. Li, D. Viehland, J. Appl. Phys. 96, 3382 (2004)CrossRefGoogle Scholar
  40. 40.
    S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 85, 2307 (2004)CrossRefGoogle Scholar
  41. 41.
    Shuxiang Dong, John G. Bai, Junyi Zhai et al., Appl. Phys. Lett. 86, 182506 (2005)CrossRefGoogle Scholar
  42. 42.
    S. Zhang, C.M. Leung, W. Kuang, S.W. Or, S.L. Ho. J. Appl. Phys. 113, 17C733 (2013)Google Scholar
  43. 43.
    S.X. Dong, J.G. Bai, J.Y. Zhai, J.F. Li, G.Q. Lu, D. Viehland, S.J. Zhang, T.R. Shrout, Appl. Phys. Lett. 86, 182506 (2005)CrossRefGoogle Scholar
  44. 44.
    Jitao Zhang, Ping Li, Yumei Wen, Wei He et al., Rev. Sci. Instrum. 83, 115001 (2012)CrossRefGoogle Scholar
  45. 45.
    R.V. Petrov, N.V. Yegerev, M.I. Bichurin, S.R. Aleksić, Current sensor based on magnetoelectric effect, in Proceedings of XVIII-th International Symposium on Electrical Apparatus and Technologies SIELA 2014, , Bourgas, Bulgaria, 29–31 May 2014Google Scholar
  46. 46.
    I.N. Solovyev, A.N. Solovyev, R.V. Petrov, M.I. Bichurin, A.N. Vučković, N.B. Raičević. Sensitivity of magnetoelectric current sensor, in Proceedings of 11th International Conference on Applied Electromagnetics—ΠEC 2013, Niš, Serbia, 1–4 Sept 2013, pp. 109–110Google Scholar
  47. 47.
    R.V. Petrov, I.N. Solovyev, A.N. Soloviev, M.I. Bichurin, Magnetoelectic current sensor, in PIERS Proceedings, Stockholm, Sweden, 12–15 Aug 2013, pp. 105–108Google Scholar
  48. 48.
    M. I. Bichurin, V.M. Petrov, Modeling of magnetoelectric interaction in magnetostrictive-piezoelectric composites, in Advances in Condensed Matter Physics (2012)Google Scholar
  49. 49.
    E.L. Ginzton, Microwave Measurements (McGraw-Hill, Inc., London, 1957)Google Scholar
  50. 50.
    A. Fantom, Radio Frequency and Microwave Power Measurement, IET (1990), 278pGoogle Scholar
  51. 51.
    M.I. Bichurin, S.V. Averkin, G.A. Semenov, The magnetoelectric resonator. Patent 2450427RU Google Scholar
  52. 52.
    A.S. Tatarenko, M.I. Bichurin, Electrically tunable resonator for microwave applications based on hexaferrite-piezoelectrc layered structure. Am. J. Condens. Matter Phys. 2, #5 (2012)Google Scholar
  53. 53.
    M.I. Bichurin, V.M. Petrov, G.A. Semenov, Magnetoelectric material for components of radio-electronic devices. Patent 2363074RUGoogle Scholar
  54. 54.
    M.I. Bichurin, S.N. Ivanov, Selective microwave power detector. Patent 2451942RUGoogle Scholar
  55. 55.
    M.I. Bichurin, A.S. Tatarenko, V. Kiliba Yu, Magnetoelectric microwave power sensor. Patent 147272RUGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Mirza I. Bichurin
    • 1
    Email author
  • Vladimir M. Petrov
    • 1
  • Roman V. Petrov
    • 1
  • Alexander S. Tatarenko
    • 1
  1. 1.Novgorod State UniversityVeliky NovgorodRussia

Personalised recommendations