Parallel Fluxgate Magnetometers

  • Michal JanosekEmail author
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 19)


This chapter gives a brief overview of parallel fluxgate development, technology and performance. Starting from theoretical background through derivation of fluxgate gating curves, the fluxgate sensor is explained on its typical examples, including sensors with rod-, ring- and race-track core. The effects of geometry, construction and magnetic material treatment on parallel fluxgate noise are discussed in detail–noise levels as low as 2 pTrms·Hz−0.5 are possible with state-of-the-art devices. Basic applications of fluxgate magnetometers are given and a quick overview of commercial devices is presented, concluded with recent advances in bulk, miniature, digital and aerospace devices.


Sensor Noise Excitation Field Fluxgate Magnetometer Demagnetization Factor Excitation Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Aschenbrenner, G. Goubau, Eine Anordnung zur Registrierung rascher magnetischer Störungen. Hochfrequenztechnik und Elektroakustik 47(6), 177–181 (1936)Google Scholar
  2. 2.
    D.I. Gordon, R.H. Lundsten, R. Chiarodo, Factors affecting the sensitivity of gamma-level ring-core magnetometers. IEEE Trans. Magn. 1(4), 330–337 (1965)CrossRefGoogle Scholar
  3. 3.
    F Primdahl, The fluxgate mechanism, part I: the gating curves of parallel and orthogonal fluxgates. IEEE Trans. Magn. 6(2), 376–383 (1970)Google Scholar
  4. 4.
    J.R. Burger, The theoretical output of a ring core fluxgate sensor. IEEE Trans. Magn. 8(4), 791–796 (1972)Google Scholar
  5. 5.
    A.L. Geiler et al., A quantitative model for the nonlinear response of fluxgate magnetometers. J. Appl. Phys. 99(8), 08B316 (2006)CrossRefGoogle Scholar
  6. 6.
    J.L.M.J. van Bree, J.A. Poulis, F.N. Hooge, Barkhausen noise in fluxgate magnetometers. Appl. Sci. Res. 29(1), 59–68 (1974)CrossRefGoogle Scholar
  7. 7.
    M. Tejedor, B. Hernando, M.L. Sánchez, Reversible permeability for perpendicularly superposed induction in metallic glasses for fluxgate sensors. J. Magn. Magn. Mater. 133(1), 338–341 (1994)CrossRefGoogle Scholar
  8. 8.
    H. Bittel, L. Storm, Rauschen. Eine Einfuehrung zum Verstaendnis elektrischer Schwankungserscheinungen. (Springer, Berlin, 1971) (1)Google Scholar
  9. 9.
    C. Hinnrichs et al., Dependence of sensitivity and noise of fluxgate sensors on racetrack geometry. IEEE Trans. Magn. 37(4), 1983–1985 (2001)Google Scholar
  10. 10.
    D. Scouten, Sensor noise in low-level flux-gate magnetometers. IEEE Trans. Magn. 8(2), 223–231 (1972)CrossRefGoogle Scholar
  11. 11.
    M. Butta et al., Influence of magnetostriction of NiFe electroplated film on the noise of fluxgate. IEEE Trans. Magn. 50(11), 1–4 (2014)Google Scholar
  12. 12.
    P. Ripka, M. Pribil, M. Butta, Fluxgate Offset Study. IEEE Trans. Magn. 50(11), 1–4 (2014)CrossRefGoogle Scholar
  13. 13.
    F. Primdahl et al., Demagnetising factor and noise in the fluxgate ring-core sensor. J. Phys. E: Sci. Instrum. 22(12), 1004 (1989)CrossRefGoogle Scholar
  14. 14.
    R.H. Koch, J.R. Rozen, Low-noise flux-gate magnetic-field sensors using ring-and rod-core geometries. Appl. Phys. Lett. 78(13), 1897–1899 (2001)CrossRefGoogle Scholar
  15. 15.
    C. Moldovanu et al., The noise of the Vacquier type sensors referred to changes of the sensor geometrical dimensions. Sens. Actuators A 81(1), 197–199 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    O.V. Nielsen et al., Analysis of a fluxgate magnetometer based on metallic glass sensors. Meas. Sci. Technol. 2(5), 435 (1991)CrossRefGoogle Scholar
  17. 17.
    P. Ripka, Race-track fluxgate sensors. Sens. Actuators, A 37, 417–421 (1993)CrossRefGoogle Scholar
  18. 18.
    H.U. Auster et al., in The THEMIS fluxgate magnetometer. The THEMIS Mission (Springer, New York, 2009), pp. 235–264Google Scholar
  19. 19.
    O. Dezuari et al., Printed circuit board integrated fluxgate sensor. Sens. Actuators, A 81(1), 200–203 (2000)CrossRefGoogle Scholar
  20. 20.
    J. Kubik, M. Janosek, P. Ripka, Low-power fluxgate sensor signal processing using gated differential integrator. Sens. Lett. 5(1), 149–152 (2007)Google Scholar
  21. 21.
    O. Zorlu, P. Kejik, W. Teppan, A closed core microfluxgate sensor with cascaded planar FeNi rings. Sens. Actuators A 162(2), 241–247 (2010)CrossRefGoogle Scholar
  22. 22.
    J. Lei, C. Lei, Y. Zhou, Micro fluxgate sensor using solenoid coils fabricated by MEMS technology. Meas. Sci. Rev. 12(6), 286–289 (2012)CrossRefGoogle Scholar
  23. 23.
    E. Delevoye et al., Microfluxgate sensors for high frequency and low power applications. Sens. Actuators A 145, 271–277 (2008)CrossRefGoogle Scholar
  24. 24.
    P. Butvin et al., Field annealed closed-path fluxgate sensors made of metallic-glass ribbons. Sens. Actuators A Phys. 184, 72–77 (2012)Google Scholar
  25. 25.
    M. Janosek et al., Effects of core dimensions and manufacturing procedure on fluxgate noise. Acta Phys. Pol. A 126(1), 104–105 (2014)CrossRefGoogle Scholar
  26. 26.
    M.H. Acuna, Fluxgate magnetometers for outer planets exploration. IEEE Trans. Magn. 10, 519–523 (1974)CrossRefGoogle Scholar
  27. 27.
    K. Shirae, Noise in amorphous magnetic materials. IEEE Trans. Magn. 20(5), 1299–1301 (1984)CrossRefGoogle Scholar
  28. 28.
    D. Rühmer et al., Vector fluxgate magnetometer for high operation temperatures up to 250 °C. Sens. Actuators A Phys. 228, 118–124 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Matsuoka et al., Development of fluxgate magnetometers and applications to the space science missions. Sci. Instrum. Sound. Rocket Satell. (2012)Google Scholar
  30. 30.
    O.V. Nielsen et al., Development, construction and analysis of the “Oersted” fluxgate magnetometer. Meas. Sci. Technol. 6(8), 1099 (1995)Google Scholar
  31. 31.
    R. Piel, F. Ludwig, M. Schilling, Noise optimization of racetrack fluxgate sensors. Sens. Lett. 7(3), 317–321 (2009)CrossRefGoogle Scholar
  32. 32.
    F. Primdahl et al., The short-circuited fluxgate output current. J. Phys. E Sci. Instrum. 22(6), 349 (1989)CrossRefGoogle Scholar
  33. 33.
    B. Andò et al., in Experimental investigations on the spatial resolution in RTD-fluxgates. IEEE Instrumentation and Measurement Technology Conference, 2009 (IEEE 2009), pp. 1542–1545Google Scholar
  34. 34.
    D. High, Sensor Signal Conditioning IC for Closed-Loop Magnetic Current Sensor (Texas Instruments, 2006)Google Scholar
  35. 35.
    P. Ripka, W.G. Hurley, Excitation efficiency of fluxgate sensors. Sens. Actuators A 129(1), 75–79 (2006)CrossRefGoogle Scholar
  36. 36.
    J. Piil-Henriksen et al., Digital detection and feedback fluxgate magnetometer. Meas. Sci. Technol. 7(6), 897 (1996)CrossRefGoogle Scholar
  37. 37.
    W. Magnes et al., in Magnetometer Front End ASIC. Proceedings of 2nd International Workshop on Analog and Mixed Signal Integrated Circuits for Space Applications, (Noordwijk, 2008) pp. 99–106Google Scholar
  38. 38.
    C.T. Russell et al., The magnetospheric multiscale magnetometers. Space Sci. Rev. 1–68 (2014)Google Scholar
  39. 39.
    D.T. Germain-Jones, Post-war developments in geophysical instrumentation for oil prospecting. J. Sci. Instrum. 34(1), 1 (1957)CrossRefGoogle Scholar
  40. 40.
    W.L. Webb, Aircraft navigation instruments. Electr. Eng. 70(5), 384–389 (1951)CrossRefGoogle Scholar
  41. 41.
    S.F. Singer, in Measurements of the Earth’s Magnetic Field from a Satellite Vehicle. Scientific uses of earth satellites (Univ. Michigan Press, Ann Arbor,1956), pp. 215–233Google Scholar
  42. 42.
    M.H. Acuna et al., in The MAGSAT Vector Magnetometer: a Precision Fluxgate Magnetometer for the Measurement of the Geomagnetic Field. NASA Technical Memorandum (1978)Google Scholar
  43. 43.
    T.J. Sabaka et al., CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data. Geophys. J. Int. 200(3), 1596–1626 (2015)CrossRefGoogle Scholar
  44. 44.
    Y.H. Pei, H.G. YEO, in UXO Survey Using Vector Magnetic Gradiometer on Autonomous Underwater Vehicle. OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges (2009), pp. 1–8Google Scholar
  45. 45.
    F. Ludwig et al., Magnetorelaxometry of magnetic nanoparticles with fluxgate magnetometers for the analysis of biological targets. J. Magn. Magn. Mater. 293(1), 690–695 (2005)CrossRefGoogle Scholar
  46. 46.
    J. Tomek et al., Application of fluxgate gradiometer in magnetopneumography. Sens. Actuators A 132(1), 214–217 (2006)CrossRefGoogle Scholar
  47. 47.
    T. Kudo, S. Kuribara, Y. in Takahashi, Wide-range ac/dc Earth Leakage Current Sensor Using Fluxgate with Self-excitation System. IEEE Sensors (2011), pp. 512–515Google Scholar
  48. 48.
    Y. Nishio, F. Tohyama, N. Onishi, The sensor temperature characteristics of a fluxgate magnetometer by a wide-range temperature test for a Mercury exploration satellite. Meas. Sci. Technol. 18(8), 2721 (2007)CrossRefGoogle Scholar
  49. 49.
    J. Jeng, J. Chen, C. Lu, Enhancement in sensitivity using multiple harmonics for miniature fluxgates. IEEE Trans. Magn. 48(11), 3696–3699 (2012)CrossRefGoogle Scholar
  50. 50.
    J.M.G. Merayo, P. Brauer, F. Primdahl, Triaxial fluxgate gradiometer of high stability and linearity. Sens. Actuators A 120(1), 71–77 (2005)CrossRefGoogle Scholar
  51. 51.
    G. Sulzberger et al., in Demonstration of the Real-time Tracking Gradiometer for Buried Mine Hunting while Operating from a Small Unmanned Underwater Vehicle. IEEE Oceans (2006)Google Scholar
  52. 52.
    Y. Sui et al., Compact fluxgate magnetic full-tensor gradiometer with spherical feedback coil. Rev. Sci. Instrum. 85(1), 014701 (2014)CrossRefGoogle Scholar
  53. 53.
    M. Kashmiri et al., in A 200kS/s 13.5 b Integrated-fluxgate Differential-magnetic-to-digital Converter with an Oversampling Compensation Loop for Contactless Current Sensing. IEEE International Solid-State Circuits Conference-(ISSCC), 2015 (IEEE, 2015), pp. 1–3Google Scholar
  54. 54.
    Texas Instruments Inc., DRV425—Fluxgate Magnetic-Field Sensor (2015),
  55. 55.
    A. Cerman et al., in Self-compensating Excitation of Fluxgate Sensors for Space Magnetometers. IEEE Instrumentation and Measurement Technology Conference Proceedings, 2008 (IEEE, 2008), pp. 2059–2064Google Scholar
  56. 56.
    K.-H. Glassmeier et al., RPC-MAG the fluxgate magnetometer in the ROSETTA plasma consortium. Space Sci. Rev. 128(1–4), 649–670 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Measurement, Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations