Microfabricated Optically-Pumped Magnetometers

  • Ricardo Jiménez-Martínez
  • Svenja KnappeEmail author
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 19)


Optical magnetometers (OPMs), implemented by optical interrogation of alkali-atoms contained in a vapor cell, are among the most sensitive detectors for magnetic fields. Due to the fact that weak magnetic fields are ubiquitous in our world, high-sensitive magnetometers are demanded in a wide range of scientific and practical applications. Here we review some of the highly miniaturized OPMs recently developed using silicon microfabrication techniques. This approach opens a number of attractive advantages, besides further miniaturization, such as integration of different sensing technologies within the same silicon platform and cost-efficient manufacturing of a large number of sensors with tight tolerances at potentially low cost.


Distribute Bragg Reflector Alkali Atom Sensor Head Coherent Population Trapping Vapor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



R. Jiménez-Martínez acknowledges support from the ICFO-NEST Fellowship program.


  1. 1.
    J.C. Allred, R.N. Lyman, T.W. Kornack, M.V. Romalis, High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 89, 130801 (2002)CrossRefGoogle Scholar
  2. 2.
    H.B. Dang, A.C. Maloof, M.V. Romalis, Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 97, 151110 (2010)CrossRefGoogle Scholar
  3. 3.
    I.K. Kominis, T.W. Kornack, J.C. Allred, M.V. Romalis, A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003)CrossRefGoogle Scholar
  4. 4.
    O. Alem, T.H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff et al., Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers. Phys. Med. Biol. 60, 4797 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Knappe, T.H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, L. Trahms, Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications. Appl. Phys. Lett. 97, 133703 (2010)CrossRefGoogle Scholar
  6. 6.
    T.H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe, Magnetoencephalography with a chip-scale atomic magnetometer. Biomed. Opt. Express 3, 981–990 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Belfi, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, L. Moi, Cesium coherent population trapping magnetometer for cardiosignal detection in an unshielded environment. J. Opt. Soc. Am. B-Opt. Phys. 24, 2357–2362 (2007)CrossRefGoogle Scholar
  8. 8.
    G. Bison, N. Castagna, A. Hofer, P. Knowles, J.L. Schenker, M. Kasprzak et al., A room temperature 19-channel magnetic field mapping device for cardiac signals. Appl. Phys. Lett. 95, 173701 (2009)CrossRefGoogle Scholar
  9. 9.
    C. Johnson, P.D.D. Schwindt, M. Weisend, Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer. Appl. Phys. Lett. 97, 243703 (2010)CrossRefGoogle Scholar
  10. 10.
    M.N. Livanov, Recording of human magnetic fields. Dokl. Akad. Nauk SSSR 238, 253–256 (1977)Google Scholar
  11. 11.
    V.K. Shah, R.T. Wakai, A compact, high performance atomic magnetometer for biomedical applications. Phys. Med. Biol. 58, 8153 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Taue, Y. Sugihara, T. Kobayashi, S. Ichihara, K. Ishikawa, N. Mizutani, Development of a highly sensitive optically pumped atomic magnetometer for biomagnetic field measurements: a phantom study Magnetics. IEEE Trans. 46, 3635–3638 (2010)Google Scholar
  13. 13.
    R. Wyllie, M. Kauer, R.T. Wakai, T.G. Walker, Optical magnetometer array for fetal magnetocardiography. Opt. Lett. 37, 2247–2249 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Xia, A.B.-A. Baranga, D. Hoffman, M.V. Romalis, Magnetoencephalography with an atomic magnetometer, Appl. Phys. Lett. 89, 211104–211103 (2006)Google Scholar
  15. 15.
    M. Díaz-Michelena, Small magnetic sensors for space applications. Sensors 9, 2271–2288 (2009)CrossRefGoogle Scholar
  16. 16.
    I. Mateos, B. Patton, E. Zhivun, D. Budker, D. Wurm, J. Ramos-Castro, Noise characterization of an atomic magnetometer at sub-millihertz frequencies. Sens. Actuators, A 224, 147–155 (2015)CrossRefGoogle Scholar
  17. 17.
    P.A. Bottomley, NMR imaging techniques and applications: a review. Rev. Sci. Instrum. 53, 1319–1337 (1982)CrossRefGoogle Scholar
  18. 18.
    P.C. Lauterbur, Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973)CrossRefGoogle Scholar
  19. 19.
    D.C. Jiles, Review of magnetic methods for nondestructive evaluation. NDT International 21, 311–319 (1988)CrossRefGoogle Scholar
  20. 20.
    D. Cohen, Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175, 664–666 (1972)CrossRefGoogle Scholar
  21. 21.
    S.R. Steinhubl, E.D. Muse, E.J. Topol, The emerging field of mobile health. Sci. Trans. Med. 7, 283rv283 (2015)Google Scholar
  22. 22.
    W. Happer, Optical pumping. Rev. Mod. Phys. 44, 169–249 (1972)CrossRefGoogle Scholar
  23. 23.
    V. Shah, S. Knappe, P.D.D. Schwindt, J. Kitching, Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat. Photonics 1, 649–652 (2007)CrossRefGoogle Scholar
  24. 24.
    S.J. Smullin, I.M. Savukov, G. Vasilakis, R.K. Ghosh, M. Romalis, Low-noise high-density alkali-metal scalar magnetometer. Phys. Rev. A 80, 033420 (2009)CrossRefGoogle Scholar
  25. 25.
    I.M. Savukov, S.J. Seltzer, M.V. Romalis, K.L. Sauer, Tunable atomic magnetometer for detection of radio-frequency magnetic fields. Phys. Rev. Lett. 95, 063004 (2005)CrossRefGoogle Scholar
  26. 26.
    M.P. Ledbetter, I.M. Savukov, V.M. Acosta, D. Budker, M.V. Romalis, Spin-exchange-relaxation-free magnetometry with Cs vapor. Phys. Rev. A 77, 033408 (2008)CrossRefGoogle Scholar
  27. 27.
    D.A. Steck, Rubidium 87 D line data, revision 2.1.4 (2010)Google Scholar
  28. 28.
    V. Shah, G. Vasilakis, M.V. Romalis, High bandwidth atomic magnetometery with continuous quantum nondemolition measurements. Phys. Rev. Lett. 104, 013601 (2010)CrossRefGoogle Scholar
  29. 29.
    B. Patton, O.O. Versolato, D.C. Hovde, E. Corsini, J.M. Higbie, D. Budker, A remotely interrogated all-optical 87Rb magnetometer. Appl. Phys. Lett. 101, 083502 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Belfi, G. Bevilacqua, V. Biancalana, Y. Dancheva, L. Moi, All optical sensor for automated magnetometry based on coherent population trapping. J. Opt. Soc. Am. B 24, 1482–1489 (2007)CrossRefGoogle Scholar
  31. 31.
    W.E. Bell, A.L. Bloom, Optically driven spin precession. Phys. Rev. Lett. 6, 280 (1961)CrossRefGoogle Scholar
  32. 32.
    V. Acosta, M.P. Ledbetter, S.M. Rochester, D. Budker, D.F.J. Kimball, D.C. Hovde et al., Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range. Phys. Rev. A 73, 053404 (2006)CrossRefGoogle Scholar
  33. 33.
    G. Alzetta, A. Gozzini, L. Moi, G. Orriols, Experimental-method for observation of Rf transitions and laser beat resonances in oriented Na vapor. Nuovo Cimento Della Societa Italiana Di Fisica B-Gen. Phys. Relativ. Astron. Math. Phys. Methods 36, 5–20 (1976)Google Scholar
  34. 34.
    C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, R. Wynands, Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL). Appl. Phys. B 70, 407–413 (2000)CrossRefGoogle Scholar
  35. 35.
    V. Gerginov, V. Shah, S. Knappe, L. Hollberg, J. Kitching, Atomic-based stabilization for laser-pumped atomic clocks. Opt. Lett. 31, 1851–1853 (2006)CrossRefGoogle Scholar
  36. 36.
    F. Gruet, F. Vecchio, C. Affolderbach, Y. Pétremand, N.F. de Rooij, T. Maeder et al., A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules. Opt. Lasers Eng. 51, 1023–1027 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Knappe, H.G. Robinson, L. Hollberg, Microfabricated saturated absorption spectroscopy with alkali atoms. Opt. Express 15, 6293–6299 (2007)CrossRefGoogle Scholar
  38. 38.
    V. Venkatraman, H. Shea, F. Vecchio, T. Maeder, P. Ryser, in LTCC Integrated Miniature Rb Discharge Lamp Module for Stable Optical Pumping in Miniature Atomic Clocks and Magnetometers. 2012 IEEE 18th International Symposium for Design and Technology in Electronic Packaging (SIITME), pp. 111–114Google Scholar
  39. 39.
    V. Venkatraman, S. Kang, C. Affolderbach, H. Shea, G. Mileti, Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source. Appl. Phys. Lett. 104, 054104 (2014)CrossRefGoogle Scholar
  40. 40.
    D.K. Serkland, K.M. Geib, G.M. Peake, R. Lutwak, A. Rashed, M. Varghese et al., in VCSELs for Atomic Sensors, eds. by K.D. Choquette, J.K. Guenter, Proceedings of SPIE 6484: Vertical-Cavity Surface-Emitting Lasers XI (2007)Google Scholar
  41. 41.
    S. Knappe, V. Velichansky, H.G. Robinson, J. Kitching, L. Hollberg, Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers. Rev. Sci. Instrum. 74, 3142–3145 (2003)CrossRefGoogle Scholar
  42. 42.
    G. Wallis, D. Pomerantz, Field assisted glass-metal sealing. J. Appl. Phys. 40, 3946–3949 (1969)CrossRefGoogle Scholar
  43. 43.
    Y. Pétremand, C. Affolderbach, R. Straessle, M. Pellaton, D. Briand, G. Mileti et al., Microfabricated rubidium vapour cell with a thick glass core for small-scale atomic clock applications. J. Micromech. Microeng. 22, 025013 (2012)CrossRefGoogle Scholar
  44. 44.
    S. Knappe, V. Gerginov, P.D.D. Schwindt, V. Shah, H. Robinson, L. Hollberg et al., Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability. Opt. Lett. 30, 2351–2353 (2005)CrossRefGoogle Scholar
  45. 45.
    L.-A. Liew, S. Knappe, J. Moreland, H.G. Robinson, L. Hollberg, J. Kitching, Microfabricated alkali atom vapor cells. Appl. Phys. Lett. 84, 2694–2696 (2004)CrossRefGoogle Scholar
  46. 46.
    F. Gong, Y.Y. Jau, K. Jensen, W. Happer, Electrolytic fabrication of atomic clock cells. Rev. Sci. Instrum. 77, 076101 (2006)CrossRefGoogle Scholar
  47. 47.
    L.-A. Liew, J. Moreland, V. Gerginov, Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide. Appl. Phys. Lett. 90, 114106 (2007)CrossRefGoogle Scholar
  48. 48.
    S. Woetzel, V. Schultze, R. IJsselsteijn, T. Schulz, S. Anders, R. Stolz et al., Microfabricated atomic vapor cell arrays for magnetic field measurements, Rev. Sci. Instrum. 82, 033111 (2001)Google Scholar
  49. 49.
    J. Haesler, L. Balet, J.A. Porchet, T. Overstolz, J. Pierer, R.J. James, et al., in The Integrated Swiss Miniature Atomic Clock. European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), 2013 Joint, pp. 579–581 (2013)Google Scholar
  50. 50.
    M. Hasegawa, R.K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano et al., Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks. Sens. Actuators, A 167, 594–601 (2011)CrossRefGoogle Scholar
  51. 51.
    L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J.C. Beugnot, J. Dziuban et al., New approach of fabrication and dispensing of micromachined cesium vapor cell. MOEMS 7, 033013–033016 (2008)CrossRefGoogle Scholar
  52. 52.
    S.-K. Lee, M.V. Romalis, Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry. J. Appl. Phys. 103, 084904 (2008)CrossRefGoogle Scholar
  53. 53.
    W.C. Griffith, S. Knappe, J. Kitching, Atomic magnetometer with sub-5-femtotesla sensitivity using a microfabricated vapor cell. Opt. Express 18, 27167–27172 (2010)CrossRefGoogle Scholar
  54. 54.
    M.A. Perez, U. Nguyen, S. Knappe, E.A. Donley, J. Kitching, A.M. Shkel, Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS. Sens. Actuators, A 154, 295–303 (2009)CrossRefGoogle Scholar
  55. 55.
    M.A. Perez, S. Knappe, J. Kitching, 45° silicon etching for chip scale atomic devices (unpublished)Google Scholar
  56. 56.
    E.J. Eklund, A.M. Shkel, S. Knappe, E.A. Donley, J. Kitching, Glass-blown spherical microcells for chip-scale atomic devices. Sens. Actuators, A 143, 175–180 (2008)CrossRefGoogle Scholar
  57. 57.
    D. Senkal, M.J. Ahamed, S. Askari, A.M. Shkel, MEMS micro-glassblowing paradigm for wafer-level fabrication of fused silica wineglass gyroscopes. Procedia Eng. 87, 1489–1492 (2014)CrossRefGoogle Scholar
  58. 58.
    N. Dural, M.V. Romalis, Gallium phosphide as a new material for anodically bonded atomic sensors. APL Mat. 2, 086101 (2014)CrossRefGoogle Scholar
  59. 59.
    S. Woetzel, E. Kessler, M. Diegel, V. Schultze, H.-G. Meyer, Low-temperature anodic bonding using thin films of lithium-niobate-phosphate glass. J. Micromech. Microeng. 24, 095001 (2014)CrossRefGoogle Scholar
  60. 60.
    R. Straessle, M. Pellaton, C. Affolderbach, Y. Petremand, D. Briand, G. Mileti et al., Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks. J. Appl. Phys. 113, 064501 (2013)CrossRefGoogle Scholar
  61. 61.
    M.V. Balabas, T. Karaulanov, M.P. Ledbetter, D. Budker, Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. Phys. Rev. Lett. 105, 070801 (2010)CrossRefGoogle Scholar
  62. 62.
    M.A. Bouchiat, J. Brossel, Relaxation of optically pumped Rb atoms on paraffin-coated walls. Phys. Rev. 147, 41–54 (1966)CrossRefGoogle Scholar
  63. 63.
    S.J. Seltzer, M.V. Romalis, High-temperature alkali vapor cells with antirelaxation surface coatings. J. Appl. Phys. 106, 114905 (2009)CrossRefGoogle Scholar
  64. 64.
    Y.W. Yi, H.G. Robinson, S. Knappe, J.E. Maclennan, C.D. Jones, C. Zhu et al., Method for characterizing self-assembled monolayers as antirelaxation wall coatings for alkali vapor cells. J. Appl. Phys. 104, 023534 (2008)CrossRefGoogle Scholar
  65. 65.
    R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti et al., Microfabricated alkali vapor cell with anti-relaxation wall coating. Appl. Phys. Lett. 105, 043502 (2014)CrossRefGoogle Scholar
  66. 66.
    G. Vasilakis, H. Shen, K. Jensen, M. Balabas, D. Salart, B. Chen et al., Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement. Nat. Phys. 11, 389–392 (2015)CrossRefGoogle Scholar
  67. 67.
    H. Korth, K. Strohbehn, F. Tajeda, A. Andreou, S. McVeig, J. Kitching et al., Chip-scale absolute scalar magnetometer for space applications. Johns Hopkins APL Tech. Dig. 28, 248–249 (2010)Google Scholar
  68. 68.
    R. Mhaskar, S. Knappe, J. Kitching, in Low-Frequency Characterization of Mems-Based Portable Atomic Magnetometer, Frequency Control Symposium (FCS), 2010 IEEE International, pp. 376–379Google Scholar
  69. 69.
    P.D.D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew et al., Chip-scale atomic magnetometer. Appl. Phys. Lett. 85, 6409–6411 (2004)CrossRefGoogle Scholar
  70. 70.
    P.D.D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, A chip-scale atomic magnetometer with improved sensitivity using the Mx technique. Appl. Phys. Lett. 90, 081102 (2007)CrossRefGoogle Scholar
  71. 71.
    R. Jiménez-Martínez, W.C. Griffith, S. Knappe, J. Kitching, M. Prouty, High-bandwidth optical magnetometer. J. Opt. Soc. Am. B 29, 3398–3403 (2012)CrossRefGoogle Scholar
  72. 72.
    J. Preusser, S. Knappe, V. Gerginov, J. Kitching, in A Microfabricated Photonic Magnetometer. 2009 European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference CLEO Europe—EQEC, pp. 1–1Google Scholar
  73. 73.
    M.J. Mescher, R. Lutwak, M. Varghese, in An Ultra-Low-Power Physics Package for a Chip-Scale Atomic Clock, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005 Digest of Technical Papers TRANSDUCERS ‘05, Vol. 311, pp. 311–316 (2005)Google Scholar
  74. 74.
    R. Mhaskar, S. Knappe, J. Kitching, A low-power, high-sensitivity micromachined optical magnetometer. Appl. Phys. Lett. 101, 241105 (2012)CrossRefGoogle Scholar
  75. 75.
    M.A. Perez, S. Knappe, J. Kitching, in MEMS Techniques for the Parallel Fabrication of Chip Scale Atomic Devices. 2010 IEEE Sensors, pp. 2155–2158 (2010)Google Scholar
  76. 76.
    A. Bloom, Principles of operation of the rubidium vapor magnetometer. Appl. Opt. 1, 61–68 (1962)CrossRefGoogle Scholar
  77. 77.
    W.F. Stuart, M.J. Usher, S.H. Hall, Rubidium self-oscillating magnetometer for earth’s field measurements. Nature 202, 76 (1964)CrossRefGoogle Scholar
  78. 78.
    J. Dupont-Roc, S. Haroche, C. Cohen-Tannoudji, Detection of very weak magnetic fields (10−9 gauss) by Rb zero-field level crossing resonances. Phys. Lett. A 28, 628–639 (1969)CrossRefGoogle Scholar
  79. 79.
    H.J. Lee, J.H. Shim, H.S. Moon, K. Kim, Flat-response spin-exchange relaxation free atomic magnetometer under negative feedback. Opt. Express 22, 19887–19894 (2014)CrossRefGoogle Scholar
  80. 80.
    S.J. Seltzer, M.V. Romalis, Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer. Appl. Phys. Lett. 85, 4804–4806 (2004)CrossRefGoogle Scholar
  81. 81.
    R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D.K. Serkland, G.M. Peake, in The MAC—A Miniature Atomic Clock. Joint Meeting of the IEEE International Frequency Control Symposium and the Precise Time and Time Interval (PTTI) Systems and Applications Meeting, Vancouver, Canada, pp. 752–757 (2005)Google Scholar
  82. 82.
    M. Larsen, M. Bulatowicz, in Nuclear Magnetic Resonance Gyroscope: For DARPA’s Micro-technology for Positioning, Navigation and Timing Program. 2012 IEEE International on Frequency Control Symposium (FCS), pp. 1–5 (2012)Google Scholar
  83. 83.
    J. Kitching, S. Knappe, P.D.D. Schwindt, V. Shah, L. Hollberg, L. Liew, J. Moreland, in Power Dissipation in Vertically Integrated Chip-Scale Atomic Clocks. Proceedings of the 2004 IEEE International Frequency Control Symposium, pp. 781–784 (2004)Google Scholar
  84. 84.
    B. Lindseth, P.D.D. Schwindt, J. Kitching, D. Fischer, V. Shusterman, Non-Contact Measurement of Cardiac Electromagnetic Field in Mice Using a Microfabricated Atomic Magnetometer. Proceedings of 2007 Conference on Computers in Cardiology (2007)Google Scholar
  85. 85.
    A. Pollinger, M. Ellmeier, W. Magnes, C. Hagen, W. Baumjohann, E. Leitgeb et al., in Enable the Inherent Omni-Directionality of an Absolute Coupled Dark State Magnetometer for e.g. Scientific Space Applications. 2012 IEEE International on Instrumentation and Measurement Technology Conference (I2MTC), pp. 33–36 (2012)Google Scholar
  86. 86.
    W. Magnes, R. Lammegger, A. Pollinger, M. Ellmeier, C. Hagen, I. Jernej et al., in Space Qualification of a New Scalar Magnetometer. Geophysical Research Abstracts. EGU 2013-9600-2011Google Scholar
  87. 87.
    Z.D. Grujić, A. Weis, Atomic magnetic resonance induced by amplitude-, frequency-, or polarization-modulated light. Phys. Rev. A 88, 012508 (2013)CrossRefGoogle Scholar
  88. 88.
    R. Jiménez-Martínez, W.C. Griffith, W. Ying-Ju, S. Knappe, J. Kitching, K. Smith et al., Sensitivity comparison of Mx and frequency-modulated bell-bloom Cs magnetometers in a microfabricated cell, instrumentation and measurement. IEEE Trans. 59, 372–378 (2010)Google Scholar
  89. 89.
    V. Schultze, R. Ijsselsteijn, T. Scholtes, S. Woetzel, H.-G. Meyer, Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer. Opt. Express 20, 14201–14212 (2012)CrossRefGoogle Scholar
  90. 90.
    W. Happer, H. Tang, Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors. Phys. Rev. Lett. 31, 273 (1973)CrossRefGoogle Scholar
  91. 91.
    M.P. Ledbetter, I.M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching et al., Zero-field remote detection of NMR with a microfabricated atomic magnetometer. Proc. Nat. Acad. Sci. USA 105, 2286–2290 (2008)CrossRefGoogle Scholar
  92. 92.
    C.N. Johnson, P.D.D. Schwindt, M. Weisend, Multi-sensor magnetoencephalography with atomic magnetometers. Phys. Med. Biol. 58, 6065–6077 (2013)CrossRefGoogle Scholar
  93. 93.
    M.V. Romalis, H.B. Dang, Atomic magnetometers for materials characterization. Mater. Today 14, 258–262 (2011)CrossRefGoogle Scholar
  94. 94.
    V. Shah, M.V. Romalis, Spin-exchange relaxation-free magnetometry using elliptically polarized light. Phys. Rev. A 80, 013416 (2009)CrossRefGoogle Scholar
  95. 95.
    R. Jiménez-Martínez, S. Knappe, J. Kitching, An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening. Rev. Sci. Instrum. 85, 045124 (2014)CrossRefGoogle Scholar
  96. 96.
    P.D.D. Schwindt, A. Colombo, T. Carter, Y.-Y Jau, C.W. Berry, J. McKay et al., in Development of an Optically Pumped Atomic Magnetometer Array for Magnetoencephalography. 2015 Joint Conference of the IEEE International Frequency Control Symposium & European Frequency and Time Forum, Denver (2015)Google Scholar
  97. 97.
    K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj et al., Multi-channel atomic magnetometer for magnetoencephalography: a configuration study. NeuroImage 89, 143–151 (2014)CrossRefGoogle Scholar
  98. 98.
    E.A. Donley, J.L. Long, T.C. Liebisch, E.R. Hodby, T.A. Fisher, J. Kitching, Nuclear quadrupole resonances in compact vapor cells: the crossover between the NMR and the nuclear quadrupole resonance interaction regimes. Phys. Rev. A 79, 013420 (2009)CrossRefGoogle Scholar
  99. 99.
    R. Jiménez-Martínez, D.J. Kennedy, M. Rosenbluh, E.A. Donley, S. Knappe, S.J. Seltzer et al., Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip. Nat Commun 5, 3908 (2014)CrossRefGoogle Scholar
  100. 100.
    T.G. Walker, W. Happer, Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 69, 629–642 (1997)CrossRefGoogle Scholar
  101. 101.
    E.A. Donley, in Nuclear Magnetic Resonance Gyroscopes. 2010 IEEE Sensors, pp. 17–22 (2010)Google Scholar
  102. 102.
    J. Rutkowski, W. Fourcault, F. Bertrand, U. Rossini, S. Getin, O. Lartigue et al., in Towards a Miniature Atomic Scalar Magnetometer Using Liquid Crystal Polarization Rotator. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII. pp. 705–708 (2013)Google Scholar
  103. 103.
    M.-C. Corsi, E. Labyt, W. Fourcault, C. Gobbo, F. Bertrand, F. Alcouffe et al., Detecting Mcg Signals from a Phantom with a 4He Magnetometer (Biomag, Halifax, Canada, 2014)Google Scholar
  104. 104.
    M.P. Ledbetter, C.W. Crawford, A. Pines, D.E. Wemmer, S. Knappe, J. Kitching et al., Optical detection of NMR J-spectra at zero magnetic field. J. Magn. Reson. 199, 25–29 (2009)CrossRefGoogle Scholar
  105. 105.
    T. Theis, P. Ganssle, G. Kervern, S. Knappe, J. Kitching, M.P. Ledbetter et al., Parahydrogen-enhanced zero-field nuclear magnetic resonance. Nat. Phys. 7, 571–575 (2011)CrossRefGoogle Scholar
  106. 106.
    T. Scholtes, V. Schultze, R. Ijsselsteijn, S. Woetzel, H.G. Meyer, Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell. Phys. Rev. A 84, 043416 (2011)CrossRefGoogle Scholar
  107. 107.
    H. Clevenson, M.E. Trusheim, C. Teale, T. Schroder, D. Braje, D. Englund, Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide. Nat. Phys. 11, 393–397 (2015)CrossRefGoogle Scholar
  108. 108.
    D.D. Awschalom, J.R. Rozen, M.B. Ketchen, W.J. Gallagher, A.W. Kleinsasser, R.L. Sandstrom et al., Low-noise modular microsusceptometer using nearly quantum limited dc SQUIDs. Appl. Phys. Lett. 53, 2108–2110 (1988)CrossRefGoogle Scholar
  109. 109.
    D. Drung, S. Bechstein, K.-P. Franke, M. Scheiner, T. Schurig, Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning. IEEE Trans. Appl. Supercond. 11, 880–883 (2001)CrossRefGoogle Scholar
  110. 110.
    K. Fang, V.M. Acosta, C. Santori, Z. Huang, K.M. Itoh, H. Watanabe et al., High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers. Phys. Rev. Lett. 110, 130802 (2013)CrossRefGoogle Scholar
  111. 111.
    M.I. Faley, U. Poppe, R.E. Dunin-Borkowski, M. Schiek, F. Boers, H. Chocholacs et al., High-Tc DC SQUIDs for Magnetoencephalography. Appl. Supercond. IEEE Trans. 23, 1600705 (2013)CrossRefGoogle Scholar
  112. 112.
    J. Gallop, SQUIDs: some limits to measurement. Supercond. Sci. Technol. 16, 1575 (2003)CrossRefGoogle Scholar
  113. 113.
    M. Pannetier, C. Fermon, G. Le Goff, J. Simola, E. Kerr, Femtotesla magnetic field measurement with magnetoresistive sensors. Science 304, 1648–1650 (2004)CrossRefGoogle Scholar
  114. 114.
    S. Marauska, R. Jahns, C. Kirchhof, M. Claus, E. Quandt, R. Knöchel et al., Highly sensitive wafer-level packaged MEMS magnetic field sensor based on magnetoelectric composites. Sens. Actuators, A 189, 321–327 (2013)CrossRefGoogle Scholar
  115. 115.
    Y. Wang, J. Gao, M. Li, D. Hasanyan, Y. Shen, J. Li et al., Ultralow equivalent magnetic noise in a magnetoelectric Metglas/Mn-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure. Appl. Phys. Lett. 101, 022903 (2012)CrossRefGoogle Scholar
  116. 116.
    D. Robbes, Highly sensitive magnetometers—a review. Sens. Actuators, A 129, 86–93 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.ICFO-Institut de Ciencies FotoniquesThe Barcelona Institute of Science and TechnologyCastelldefelsSpain
  2. 2.Time and Frequency DivisionNational Institute of Standards and TechnologyBoulderUSA
  3. 3.University of ColoradoBoulderUSA

Personalised recommendations