Advertisement

Helium Magnetometers

  • Werner HeilEmail author
Chapter
  • 2.8k Downloads
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 19)

Abstract

Optically pumped helium (4He, 3He) magnetometers have provided magnetic field data for military, space exploration and geophysical laboratory applications for over five decades. More recently they are increasingly being used for experiments in basic research. The characteristics of He magnetometers that have made them instruments of choice for these varied applications include high sensitivity, high accuracy, simplicity of the resonance line, small heading errors due to light shifts, temperature independence of resonance cells, linear relationship between the magnetic field and the resonance frequency, excellent stability for gradiometer operation and robustness for field and space use . All He magnetometers manufactured from 1960 to 1990 utilized an RF electrodeless discharge He-4 lamp as an optical pumping source of 1083 nm resonance radiation. With the invent of optical fiber lasers at 1083 nm from the 1990s on, laser-pumped He magnetometers are characterized by sensitivities up to two orders of magnitude better than lamp-pumped He magnetometers and are more accurate, smaller, and very stable for use in magnetic gradiometers. A quantum step forward in terms of precision was achieved by utilizing the benefits of free spin precession. For polarized helium-3 the coherent spin precession time T* 2 can reach up to 100 h at low magnetic fields and even at high magnetic fields (> 0.1 T) nuclear spin precession times of ~5 min have been reported. This opens a new chapter of ultra-high precision magnetometry where the signal readout is accomplished by using SQUIDs, optical pumped alkalimagnetometers or NMR techniques. The following article provides a comprehensive overview on helium magnetometry starting from some historical remarks to the latest developments including future perspectives.

Keywords

Phase Noise High Magnetic Field Larmor Frequency Transverse Relaxation Time Spin Precession 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Bitter, Phys. Rev. 76, 833 (1949)CrossRefGoogle Scholar
  2. 2.
    A. Kastler, J. Phys. Radium 11, 255 (1950)CrossRefGoogle Scholar
  3. 3.
    A. Kastler, J. Opt. Soc. Am. 47, 460 (1957)CrossRefGoogle Scholar
  4. 4.
    H.G. Demelt, PR 105, 1924 (1957)CrossRefGoogle Scholar
  5. 5.
    W.E. Bell, A.L. Bloom, PR 107, 1559 (1957)CrossRefGoogle Scholar
  6. 6.
    E.B. Alexandrov, A.K. Vershovskii, Mx and Mz magnetometers (chapter 4, 60–84), in Optical Magnetometry, eds. D. Budker, D.F. Jackson Kimball (Cambridge University Press, Cambridge, 2013)Google Scholar
  7. 7.
    D.F. Jackson Kimball, S. Pustelny, V.V. Yashchuk, D. Budker, Optical magnetometry with modulated light (chapter 6, 104–125), in Optical Magnetometry, eds. D. Budker, D.F. Jackson Kimball (Cambridge University Press, Cambridge, 2013)Google Scholar
  8. 8.
    J. Brossel, A. Kastler, Compt. Rend. Acad. Sci. 229, 1213 (1949)Google Scholar
  9. 9.
    F.D. Colegrove, P.A. Franken, Phys. Rev. 119, 680 (1960)CrossRefGoogle Scholar
  10. 10.
    A.R. Keyser, J.A. Rice, L.D. Schearer, J. Geophys. Res. 66, 4163 (1961)CrossRefGoogle Scholar
  11. 11.
    B. Chéron, H. Gilles, J. Hamel, O. Moreau, E. Noël, Opt. Commun. 115, 71 (1995)CrossRefGoogle Scholar
  12. 12.
    H. Gilles, J. Hamel, B. Chéron, Rev. Sci. Instrum. 72, 2253 (2001)CrossRefGoogle Scholar
  13. 13.
    R.E. Slocum, E.J. Smith, Contrib. Geophys. Geodesy 31, 99 (2001)Google Scholar
  14. 14.
    R.E. Slocum, G. Kuhlman, L. Ryan, D. King, in OCEANS’02 MTS/IEEE, eds. by H.W. Anderson, T.W. Donaldson, Vol. 2, (IEEE Press, Biloxi, MS, 2002), p. 945Google Scholar
  15. 15.
    R.E. Slocum, D.D. McGregor, Measurement of the geomagnetic field using parametric resonance in optically pumped He4. IEEE Trans. Mag., MAG 10, 532–535 (1974)Google Scholar
  16. 16.
    G.K. Walters, F.D. Colegrove, L.D. Schearer, Phys. Rev. Lett. 8, 439 (1962)CrossRefGoogle Scholar
  17. 17.
    F.D. Colegrove, L.D. Schearer, G.K. Walters, Phys. Rev. 132, 2561 (1963)CrossRefGoogle Scholar
  18. 18.
    L.D. Schearer, F.D. Colegrove, G.K. Walters, Rev. Sci. Instr. 34, 1363 (1963)CrossRefGoogle Scholar
  19. 19.
    L.D. Schearer, Phys. Rev. 127, 512 (1962)CrossRefGoogle Scholar
  20. 20.
    P.J. Mohr, B.N. Taylor, D.B. Newell. Codata recommended values of the fundamental physical constants (2014)Google Scholar
  21. 21.
    D.D. McGregor, Rev. Sci. Instr. 58, 1067 (1987)CrossRefGoogle Scholar
  22. 22.
    J.L. Flowers, B.W. Petley, M.G. Richards, Metrologia 30, 75 (1993)CrossRefGoogle Scholar
  23. 23.
    C. Cohen-Tannoudji, J. DuPont-Roc, S. Haroche, F. Laloë, Phys. Rev. Lett. 22, 758 (1969)CrossRefGoogle Scholar
  24. 24.
    J. Dupont-Roc, S. Haroche, C. Cohen-Tannoudji, Phys. Lett. 28A, 638 (1969)CrossRefGoogle Scholar
  25. 25.
    R.E. Slocum, B.I. Marton, IEEE Trans. Magn. 10, 528 (1974)Google Scholar
  26. 26.
    N. Bloembergen, R.V. Pound, Phys. Rev. 95, 8 (1954)CrossRefGoogle Scholar
  27. 27.
    O. Moreau, B. Charon, H. Gilles, J. Hamel, E. Noël, J. Phys. III France 7, 99 (1997)CrossRefGoogle Scholar
  28. 28.
    P.J. Nacher, M. Leduc, J. de Physique 46, 2057–2073 (1985)CrossRefGoogle Scholar
  29. 29.
    R. Mueller, Physica B 297, 277–281 (2001)CrossRefGoogle Scholar
  30. 30.
    T. Gentile, M. Hayden, M. Barlow, J. Opt. Soc. Am. B 20, 2068–2074 (2003)CrossRefGoogle Scholar
  31. 31.
    G. Tastevin, S. Grot, E. Courtade, S. Bordais, P.J. Nacher, Appl. Phys. B: Lasers Optics 78, 145–156 (2004)CrossRefGoogle Scholar
  32. 32.
    P.J. Nacher, E. Courtade, M. Abboud, A. Sinatra, G. Tastevin, T. Dohnalik, Acta Phys. Pol., B 33, 2225–2236 (2002)Google Scholar
  33. 33.
    A. Nikiel-Osuchowska, G. Collier, B. Głowacz, T. Pałasz, Z. Olejniczak, W.P. Węglarz, G. Tastevin, P.J. Nacher, T. Dohnalik, Eur. Phys. J. D 67, 200 (2013)CrossRefGoogle Scholar
  34. 34.
    E. Courtade, F. Marion, P.J. Nacher, G. Tastevin, K. Kiersnowski, T. Dohnalik, Eur. Phys. J. D 21, 25–55 (2002)CrossRefGoogle Scholar
  35. 35.
    L.D. Schearer, Phys. Rev. 160, 76–80 (1967)CrossRefGoogle Scholar
  36. 36.
    D. Vrinceanu, S. Kotochigova, H.R. Sadeghpour, Phys. Rev. A 69, 022714 (2004)CrossRefGoogle Scholar
  37. 37.
    T.R. Gentile, R.D. McKeown, Phys. Rev. A 47, 456 (1993)CrossRefGoogle Scholar
  38. 38.
    F.D. Colegrove, L.D. Schearer, G.K. Walters, Phys. Rev. 135, A353 (1964)CrossRefGoogle Scholar
  39. 39.
    W.A. Fitzsimmons, N.F. Lane, G.K. Walters, Phys. Rev. 174, 193 (1968)CrossRefGoogle Scholar
  40. 40.
    R. Barbé, F. Laloë, J. Brossel, Phys. Rev. Lett. 34, 1488 (1975)CrossRefGoogle Scholar
  41. 41.
    M. Himbert, V. Lefevre-Seguin, P.J. Nacher, J. Dupont-Roc, M. Leduc, F. Laloë, J. Phys. Lett. 44, 523 (1983)CrossRefGoogle Scholar
  42. 42.
    C. Gemmel, W. Heil, S. Karpuk, K. Lenz, C. Ludwig, Y. Sobolev, K. Tullney, M. Burghoff, W. Kilian, S. Knappe-Grüneberg, W. Müller, A. Schnabel, F. Seifert, L. Trahms, S. Baeßler, Eur. Phys. J. D 57, 303–320 (2010)Google Scholar
  43. 43.
    H.-C. Koch, G. Bison, Z.D. Grujić, W. Heil, M. Kasprzak, P. Knowles, A. Kraft, A. Pazgalev, A. Schnabel, J. Voigt, A. Weis, arXiv: 1502.06366v1 (2015)Google Scholar
  44. 44.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961), pp. 82–83Google Scholar
  45. 45.
    D.I. Hoult, R.E. Richards, J. Magn. Reson. 24, 71–85 (1976)Google Scholar
  46. 46.
    A. Nikiel, P. Blümler, W. Heil, M. Hehn, S. Karpuk, A. Maul, E. Otten, L.M. Schreiber, M. Terekhov, Eur. Phys. J. D 68, 330 (2014)CrossRefGoogle Scholar
  47. 47.
    G.D. Cates, S.R. Schaefer, W. Happer, Phys. Rev. A 37, 2877 (1988)CrossRefGoogle Scholar
  48. 48.
    D.D. McGregor, Phys. Rev. A 41, 2631 (1990)CrossRefGoogle Scholar
  49. 49.
    R. Barbé, M. Leduc, F. Laloë, J. Phys. France 35, 935 (1974)CrossRefGoogle Scholar
  50. 50.
    D.R. Rich, T.R. Gentile, T.B. Smith, A.K. Thompson, G.L. Jones, Appl. Phys. Lett. 80, 2210 (2002)CrossRefGoogle Scholar
  51. 51.
    J. Schmiedeskamp, W. Heil, E.W. Otten, R.K. Kremer, A. Simon, J. Zimmer, Part I., Eur. Phys. J. D 38, 427–438 (2006)Google Scholar
  52. 52.
    A. Deninger, W. Heil, E.W. Otten, M. Wolf, R.K. Kremer, A. Simon, Part II, Eur. Phys. J. D 38, 439–443 (2006)Google Scholar
  53. 53.
    J. Schmiedeskamp, H.-J. Elmers, W. Heil, E.W. Otten, Y. Sobolev, W. Kilian, H. Rinneberg, T. Sander-Thömmes, F. Seifert, J. Zimmer, Part III., Eur. Phys. J. D 38, 445–454 (2006)Google Scholar
  54. 54.
    S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall PTR, Upper Saddle River, 1993)Google Scholar
  55. 55.
    J.A. Barnes et al., IEEE Trans. Instrum. Meas. 20, 105 (1971)CrossRefGoogle Scholar
  56. 56.
    F. Bloch, A. Siegert, Phys. Rev. 57, 522 (1940)CrossRefGoogle Scholar
  57. 57.
    N.F. Ramsey, Phys. Rev. 100, 1191 (1955)CrossRefGoogle Scholar
  58. 58.
    J. Clarke, W.M. Goubau, M.B. Ketchen, J. Low Temp. Phys. 25, 99 (1976)CrossRefGoogle Scholar
  59. 59.
    D. Drung, Supercond. Sci. Technol. 16, 1320–1336 (2003)CrossRefGoogle Scholar
  60. 60.
    M. Burghoff, H. Schleyerbach, D. Drung, L. Trahms, H. Koch, IEEE Trans. Appl. Superconductivity 9, 4069–4072 (1999)Google Scholar
  61. 61.
    M. Guéron, Magn. Reson. Med. 19, 31 (1991)CrossRefGoogle Scholar
  62. 62.
    M. Pfeffer, O. Lutz, J. Magn. Res. A 108, 106 (2005)CrossRefGoogle Scholar
  63. 63.
    International Council for Science: Committee on Data for Science and Technology (CODATA). www.codata.org. (2007)
  64. 64.
    F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, K. Tullney, PRL 112, 110801 (2014)Google Scholar
  65. 65.
    L.F. Fuks, F.S.C. Huang, C.M. Carter, W.A. Edelstein, B.P. Roemer, J. Magn. Reson. 100, 229 (1992)Google Scholar
  66. 66.
    C. Barmet, N. de Zanche, B.J. Wilm, K.P. Pruessmann, Magn. Reson. Med. 62, 269 (2009)Google Scholar
  67. 67.
    G.W. Bennett et al., Phys. Rev. D 73, 072003 (2006)CrossRefGoogle Scholar
  68. 68.
    R. Kc, Y.N. Gowda, D. Djukovic, I.D. Henry, G.H.J. Park, D. Raftery, J. Magn. Reson. 205, 63 (2010)CrossRefGoogle Scholar
  69. 69.
    A. Kraft, H-Ch. Koch, M. Daum, W. Heil, Th Lauer, D. Neumann, A. Pazgalev, Yu. Sobolev, A. Weis, EPJ Tech. Instrum. 1, 8 (2014)CrossRefGoogle Scholar
  70. 70.

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Johannes Gutenberg University of MainzMainzGermany

Personalised recommendations