Nonlinear Magneto-Optical Rotation Magnetometers

  • Wojciech GawlikEmail author
  • Szymon Pustelny
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 19)


Nonlinear magneto-optical rotation (NMOR) is the nonlinear contribution to the overall magneto-optical rotation (Faraday) signal. It yields signals that are dependent on the light and magnetic-field intensities. The later dependence enables precision magnetometry of very weak fields (relaxation-rate limited). The effect may also be investigated with the modulated light (frequency and/or amplitude modulation) to allow accurate measurements of non-zero magnetic fields. The main advantages of the NMOR magnetometry are: technical simplicity, high accuracy and wide dynamic range.


Magnetic Field Polarization Rotation Passive Mode Transverse Relaxation Time Faraday Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Faraday, On the magnetization of light, and the illumination of magnetic lines of force. Philos. Trans. R. Soc. Lond. 1, 104–123 (1846)Google Scholar
  2. 2.
    D. Macaluso, O. Corbino, Sopra una nuova azione che la luce subisce attraversando alcuni vapori metallici in un campo magnetico. Nuovo Cimento 8, 257–258 (1898)Google Scholar
  3. 3.
    D. Macaluso, O.M. Corbino, L. Magri, Sulla relazione tra il fenomeno di Zeemann e la rotazione magnetica anomala del piano di polarizzazione della luce. Nuovo Cimento 9, 384–389 (1899)Google Scholar
  4. 4.
    D. Budker, W. Gawlik, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, A. Weis, Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys. 74, 1153–1201 (2002)CrossRefGoogle Scholar
  5. 5.
    E. Verdet, Recherches sur les proprietes optiques developpees dans les corps transparents par laction du magnetisme. Ann. Chim. Phys. 41, 370–412 (1854)Google Scholar
  6. 6.
    L. Sun, S. Jiang, J.R. Marciante, Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of-32 rad/(Tm). Opt. Express 18, 12191–12196 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Li, P. Vachaspati, D. Sheng, N. Dural, M.V. Romalis, Optical rotation in excess of 100 rad generated by Rb vapor in a multipass cell. Phys. Rev. A 84, 061403(R) (2011)Google Scholar
  8. 8.
    D. Sheng, S. Li, N. Dural, M.V. Romalis, Subfemtotesla scalar atomic magnetometry using multipass cells. Phys. Rev. Lett. 110, 160802 (2013)CrossRefGoogle Scholar
  9. 9.
    D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, Small Faraday rotation measurement with a Fabry-Perot cavity. Appl. Phys. Lett. 66, 3546 (1995)CrossRefGoogle Scholar
  10. 10.
    C. Cohen-Tannoudji, A. Kastler, Optical pumping, in Progress in Optics, vol V, ed. by E. Wolf, (Elsevier, North Holland, 1966), p. 1Google Scholar
  11. 11.
    G.W. Series, Optical pumping and related topics, in Quantum Optics, the 1969 Scottisch Universities Summer School, ed. by S.M. Kay, A. Maitland (Academic Press, London, 1970), p. 395Google Scholar
  12. 12.
    A. Corney, Atomic and Laser Spectroscopy (Oxford University Presss, Oxford, 1977)Google Scholar
  13. 13.
    W. Gawlik, J. Kowalski, R. Neumann, F. Träger, Observation of the electric hexadecapole moment of free Na atoms in a forward scattering experiement. Opt. Commun. 12, 400 (1974)CrossRefGoogle Scholar
  14. 14.
    W. Bennett, Hole burning effects in a He-Ne optical maser. Phys. Rev. 126, 580 (1962)CrossRefGoogle Scholar
  15. 15.
    W. Gawlik, S. Pustelny, Nonlinear Faraday effect and its applications, in New Trends in Quantum Coherence, ed. by R. Drampyan (Nova, New York, 2009), p. 47Google Scholar
  16. 16.
    D. Budker, D.F. Kimbal Rochester (eds.), Optical Magnetometry (Cambridge University Press, Cambridge, 2013)Google Scholar
  17. 17.
    D. Budker, V. Yashchuk, M. Zolotorev, Nonlinear Magneto-optic effects with ultranarrow widths. Phys. Rev. Lett. 81, 5788 (1998)CrossRefGoogle Scholar
  18. 18.
    W.E. Bell, A.L. Bloom, Optically driven spin precession. Phys. Rev. Lett. 6, 280–281 (1961)CrossRefGoogle Scholar
  19. 19.
    S. Pustelny, M. Koczwara, Ł. Cincio, W. Gawlik, Tailoring quantum superpositions with linearly polarized amplitude-modulated light. Phys. Rev. A 83, 043832 (2011)CrossRefGoogle Scholar
  20. 20.
    D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, Nonlinear magneto-optical rotation via alignment-to-orientation conversion. Phys. Rev. Lett. 85, 2088 (2000)CrossRefGoogle Scholar
  21. 21.
    D.F. Jackson Kimball, S. Pustelny, V.V. Yashchuk, D. Budker, Optical magnetometry with modulated light, in Optical magnetometry, ed. by D. Budker, F.D.J. Kimball (Cambridge University Press, Cambridge, 2013), pp. 104–124Google Scholar
  22. 22.
    Z.D. Grujić, A. Weis, Atomic magnetic resonance induced by amplitude-, frequency-, or polarization-modulated light. Phys. Rev. A 88, 012508 (2013)Google Scholar
  23. 23.
    E. Breschi, Z.D. Gruijć, P. Knowles, A. Weis, Magneto-optical spectroscopy with polarization-modulated light. Phys. Rev. A 88, 022506 (2013)CrossRefGoogle Scholar
  24. 24.
    Y.P. Malakyan, S.M. Rochester, D. Budker, D.F. Kimball, V.V. Yashchuk, Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition. Phys. Rev. A 69, 013817 (2004)CrossRefGoogle Scholar
  25. 25.
    W. Gawlik, L. Krzemień, S. Pustelny, D. Sangla, J. Zachorowski, M. Graf, A. Sushkov, D. Budker, Nonlinear magneto-optical rotation with amplitude-modulated light. Appl. Phys. Lett. 88, 131108 (2006)CrossRefGoogle Scholar
  26. 26.
    C.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)Google Scholar
  27. 27.
    M. Auzinsh, M. Auzinsh, D. Budker, D.F. Kimball, S.M. Rochester, J.E. Stalnaker, A.O. Sushkov, V.V. Yashchuk, Phys. Rev. Lett. 93, 173002 (2004)CrossRefGoogle Scholar
  28. 28.
    A.F. Molish, B.P. Oehry, Radiation Trapping in Atomic Vapours (Oxford University Press, Oxford, 1998)Google Scholar
  29. 29.
    J.P. Wittke, R.H. Dicke, Phys. Rev. 103, 620 (1956)CrossRefGoogle Scholar
  30. 30.
    W. Gawlik, Nonstationary effects in velocity-selective optical pumping. Phys. Rev. A 34, 3760 (1986)CrossRefGoogle Scholar
  31. 31.
    E. Pfleghaar, J. Wurster, S.I. Kanorsky, A. Weis, Time of flight effects in nonlinear magneto-optical spectroscopy. Opt. Commun. 99, 303 (1993)CrossRefGoogle Scholar
  32. 32.
    M. Erhard, H.-P. Helm, Buffer-gas effects on dark resonances: theory and experiment. Phys. Rev. A 63, 043813 (2001)CrossRefGoogle Scholar
  33. 33.
    M.V. Balabas, T. Karaulanov, M.P. Ledbetter, D. Budker, Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. Phys. Rev. Lett. 105, 070801 (2010)CrossRefGoogle Scholar
  34. 34.
    V.G. Lucivero, P. Anielski, W. Gawlik, M.W. Mitchell, Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature. Rev. Sci. Instr. 85, 113108 (2014)CrossRefGoogle Scholar
  35. 35.
    W. Wasilewski, K. Jensen, H. Krauter, J.J. Renema, M.V. Balabas, E.S. Polzik, Phys. Rev. Lett. 104, 133601 (2010)CrossRefGoogle Scholar
  36. 36.
    I. Novikova, A.B. Matsko, V.L. Velichansky, M.O. Scully, G.R. Welch, Phys. Rev. A 63, 12 (2001)CrossRefGoogle Scholar
  37. 37.
    G. Vasilakis, V. Shah, M.V. Romalis, Phys. Rev. Lett. 106, 143601 (2011)CrossRefGoogle Scholar
  38. 38.
    K. Jensen, V.M. Acosta, J.M. Higbie, M.P. Ledbetter, S.M. Rochester, D. Budker, Phys. Rev. A 79, 023406 (2009)CrossRefGoogle Scholar
  39. 39.
    D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, M. Zolotorev, Sensitive magnetometry based on nonlinear magneto-optical rotation. Phys. Rev. A 62, 043403 (2000)CrossRefGoogle Scholar
  40. 40.
    S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, W. Gawlik, Magnetometry based on nonlinear magneto-optical rotation with amplitude modulated light. J. Appl. Phys. 103, 063108 (2008)CrossRefGoogle Scholar
  41. 41.
    W. Chalupczak, R.M. Godun, S. Pustelny, W. Gawlik, Room temperature femtotesla radio-frequency atomic magnetometer. Appl. Phys. Lett. 100, 242401 (2012)CrossRefGoogle Scholar
  42. 42.
    V.V. Yashchuk, S.-K. Lee, E. Paperno, Magnetic shielding, in Optical Magnetometry, ed. by D. Budker, D.F.J. Kimball (Cambridge University Press, Cambridge, 2013), pp. 104–124Google Scholar
  43. 43.
    S. Xu, S.M. Rochester, V.V. Yashchuk, M.H. Donaldson, D. Budker, Construction and applications of an atomic magnetic gradiometer based on nonlinear magneto-optical rotation. Rev. Sci. Instr. 77, 083106 (2006)CrossRefGoogle Scholar
  44. 44.
    S.J. Smullin, I.M. Savukov, G. Vasilakis, R.K. Ghosh, M.V. Romalis, Low-noise high-density alkali-metal scalar magnetometer. Phys. Rev. A 80, 033420 (2009)CrossRefGoogle Scholar
  45. 45.
    P. Wlodarczyk, S. Pustelny, J. Zachorowski, M. Lipinski, Modeling an optical magnetometer with electronic circuits-analysis and optimization. J. Instr. 7, P07015 (2012)CrossRefGoogle Scholar
  46. 46.
    S. Pustelny, W. Gawlik, S.M. Rochester, D.F. Jackson Kimball, V.V. Yashchuk, D. Budker, Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields. Phys. Rev. A 74, 063420 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.M. Smoluchowski Institute of Physics of the Jagiellonian UniversityKrakówPoland

Personalised recommendations