Planar Magnetometers

  • Asif I. ZiaEmail author
  • Subhas C. Mukhopadhyay
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 19)


The increasing demand of miniaturization, low power consumption, compactness and portability of the equipment has urged the sensors’ size to be the only selection criterion for a magnetometer. Applications, such as magnetic micro-beads, micromagnetic scanning, non-destructive testing and medical applications like magnetic drug delivery dictate the requirement of magnetic sensors that are smaller in size and own single side measurement capability. To cater those needs, it is utmost important to explore and apply new principles governing nano-scale science and state-of-the-art fabrication technology. This chapter showcases the recent advances in magnetic field planar sensors that could be used to measure magnetic field with the privilege of non-destructive measurements and single side access to the sample.


Magnetic Sensor Hall Sensor Planar Sensor Indium Antimonide Magnetic Concentrator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Mahdi, L. Panina, D. Mapps, Some new horizons in magnetic sensing: high-T c SQUIDs, GMR and GMI materials. Sens. Actuators, A 105, 271–285 (2003)CrossRefGoogle Scholar
  2. 2.
    S.M. Sze, Semiconductor Sensors (Wiley, New York, 1994)Google Scholar
  3. 3.
    P. Ripka, Sensors based on bulk soft magnetic materials: advances and challenges. J. Magn. Magn. Mater. 320, 2466–2473 (2008)CrossRefGoogle Scholar
  4. 4.
    A. Ozbay, E. Nowak, A. Edelstein, G. Fischer, C. Nordman, S.F. Cheng, Magnetic-field dependence of the noise in a magnetoresistive sensor having MEMS flux concentrators. Trans. Magn. IEEE 42, 3306–3308 (2006)CrossRefGoogle Scholar
  5. 5.
    W. Lee, M. Toney, D. Mauri, High magnetoresistance in sputtered permalloy thin films through growth on seed layers of (Ni 0.81 Fe 0.19) 1-x Cr x. Trans. Magn. IEEE 36, 381–385 (2000)CrossRefGoogle Scholar
  6. 6.
    P. Ciureanu, S. Middelhoek, Thin film resistive sensors (CRC Press, Boca Raton, 1992)Google Scholar
  7. 7.
    R.S. Popovic, Hall effect devices (CRC Press, Boca Raton, 2003)Google Scholar
  8. 8.
    P. Ripka, M. Janošek, Advances in magnetic field sensors (2010)Google Scholar
  9. 9.
    C. Lei, R. Wang, Y. Zhou, Z. Zhou, MEMS micro fluxgate sensors with mutual vertical excitation coils and detection coils. Microsyst. Technol. 15, 969–972 (2009)CrossRefGoogle Scholar
  10. 10.
    Y. Haddab, V. Mosser, M. Lysowec, J. Suski, L. Demeus, C. Renaux, D. Flandre, in Low-noise SOI Hall devices, SPIE’s First International Symposium on Fluctuations and Noise (2003), pp. 196–203Google Scholar
  11. 11.
    A. Kerlain, V. Mosser, Low frequency noise suppression in III-V Hall magnetic microsystems with integrated switches. Sens. Lett. 5, 192–195 (2007)CrossRefGoogle Scholar
  12. 12.
    P. Kejik, G. Boero, M. Demierre, R. Popovic, An integrated micro-hall probe for scanning magnetic microscopy. Sens. Actuators, A 129, 212–215 (2006)CrossRefGoogle Scholar
  13. 13.
    J. Lenz, A.S. Edelstein, Magnetic sensors and their applications. Sens. J. IEEE 6, 631–649 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Bertoldi, D. Bassi, L. Ricci, D. Covi, S. Varas, Magnetoresistive magnetometer with improved bandwidth and response characteristics. Rev. Sci. Instrum. 76, 065106-065106-6 (2005)Google Scholar
  15. 15.
    C.-C. Lu, J. Huang, P.-K. Chiu, S.-L. Chiu, J.-T. Jeng, High-sensitivity low-noise miniature fluxgate magnetometers using a flip chip conceptual design. Sensors 14, 13815–13829 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Cai, J. Qiu, L. Jiang, Planar three-axis magnetometer (2013)Google Scholar
  17. 17.
    S. Mukhopadhyay, Development of a novel planar mesh type micro-magnetic sensor for the quality inspection of electroplated materials. Sens. 2002 Proc. IEEE 2002, 741–746 (2002)CrossRefGoogle Scholar
  18. 18.
    S. Vernon, The universal impedance diagram of the ferrite pot core eddy current transducer. Trans. Magn. IEEE 25, 2639–2645 (1989)CrossRefGoogle Scholar
  19. 19.
    J. Bowler, H. Sabbagh, L. Sabbagh, The reduced impedance function for cup-core eddy-current probes. Trans. Magn. IEEE 25, 2646–2649 (1989)CrossRefGoogle Scholar
  20. 20.
    J.C. Moulder, E. Uzal, J.H. Rose, Thickness and conductivity of metallic layers from eddy current measurements. Rev. Sci. Instrum. 63, 3455–3465 (1992)CrossRefGoogle Scholar
  21. 21.
    S.C. Mukhopadhyay, S. Yamada, M. Iwahara, Investigation of near-surface material properties using planar type meander coil. JSAEM Stud. Appl. Electromagnet. Mech. 11, 61–69 (2001)Google Scholar
  22. 22.
    S.C. Mukhopadhyay, Planar electromagnetic sensors: characterization, applications and experimental results (Planare elektromagnetische Sensoren: Charakterisierung, Anwendungen und experimentelle Ergebnisse). Tm-Technisches Messen 74, 290–297 (2007)CrossRefGoogle Scholar
  23. 23.
    S. Mukhopadhyay, C. Gooneratne, G.S. Gupta, S. Yamada, Characterization and comparative evaluation of novel planar electromagnetic sensors. Trans. Magn. IEEE 41, 3658–3660 (2005)CrossRefGoogle Scholar
  24. 24.
    N.J. Goldfine, K.G. Rhoads, K.E. Walrath, D.C. Clark, Method for characterizing coating and substrates. Google Patents, (2002)Google Scholar
  25. 25.
    N.J. Goldfine, Conformable, meandering winding magnetometer (MWM) for flaw and materials characterization in ferrous and nonferrous metals. Am. Soc. Mech. Eng. Press. Vessels Pip. Div. (Publication) PVP 352, 39–43 (1997)Google Scholar
  26. 26.
    N.J. Goldfine, Magnetometers for improved materials characterization in aerospace applications. Mater. Eval. 51, 396–405 (1993)Google Scholar
  27. 27.
    S. Yamada, M. Katou, M. Iwahara, F.P. Dawson, Defect images by planar ECT probe of Meander-Mesh coils. Trans. Magn. IEEE 32, 4956–4958 (1996)CrossRefGoogle Scholar
  28. 28.
    S.C. Mukhopadhyay, C.P. Gooneratne, G.S. Gupta, S.N. Demidenko, A low-cost sensing system for quality monitoring of dairy products. IEEE Trans. Instrum. Meas. 55, 1331–1338 (2006)CrossRefGoogle Scholar
  29. 29.
    S.C. Mukhopadhyay, G.S. Gupta, J.D. Woolley, S.N. Demidenko, Saxophone reed inspection employing planar electromagnetic sensors. IEEE Trans. Instrum. Meas. 56, 2492–2503 (2007)CrossRefGoogle Scholar
  30. 30.
    M.A.M. Yunus, S.C. Mukhopadhyay, Novel planar electromagnetic sensors for detection of nitrates and contamination in natural water sources. IEEE Sens. J 11, 1440–1447 (2011)CrossRefGoogle Scholar
  31. 31.
    A.R.M. Syaifudin, P. Yu, S. Mukhopadhyay, M.J. Haji-Sheikh, J. Vanderford, Performance evaluation of a new novel planar interdigital sensors (2010), pp. 731–736Google Scholar
  32. 32.
    M.A.M. Yunus, G.R. Mendez, S.C. Mukhopadhyay, Development of a low cost system for nitrate and contamination detections in natural water supply based on a planar electromagnetic sensor. Instrum. Measur. Technol. Conf. (I2MTC), 2011 IEEE 2011, 1–6 (2011)CrossRefGoogle Scholar
  33. 33.
    S.M. Djuric, L.F. Nagy, M.S. Damnjanovic, N.M. Djuric, L.D. Zivanov, A novel application of planar-type meander sensors. Microelectron. Int. 28, 41–49 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.School of Engineering and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand
  2. 2.Department of PhysicsCOMSATS UniversityIslamabadPakistan

Personalised recommendations