Cavity Optomechanical Magnetometers

  • Warwick P. BowenEmail author
  • Changqiu Yu
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 19)


This chapter introduces a new form of magnetometer which combines precision cavity optomechanical measurement with magnetostrictive material response. Such magnetometers can be fabricated on-chip and function both at room temperature and in earths magnetic field. Firstly, we derive the fundamental limit to sensitivity due to the thermomechanical fluctuations of the system, showing that sensitivity exceeding the current state-of-the-art is in-principle possible. We then show that bandwidths in the megahertz range are feasible. Then, we discuss the experimental implementation of these magnetometers, with demonstrated sensitivity at the level of 200 picotesla and tens of micrometer resolution. Finally, we compare both theory and experiments to the state-of-the-art. The sensitivity of current devices is less than a factor of 100 away from the best similarly sized cryogenic SQUID magnetometers, while theory suggests that sensitivity over an order of magnitude superior to those devices is possible.


Radial Breathing Mode Elastic Wave Equation Optomechanical System Magnetostrictive Material Magnetostrictive Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. Bucholtz et al., High frequency fibre optic magnetometer with 70 fT Hz−1/2 resolution. Electron. Lett. 25(25), 1719–1720 (1989)CrossRefGoogle Scholar
  2. 2.
    R. Osiander et al., A microelectromechanical-based magnetostrictive magnetometer. Appl. Phys. Lett. 69(19), 2930 (1996)CrossRefGoogle Scholar
  3. 3.
    Y. Hui et al., High resolution magnetometer based on a high frequency magnetoelectric MEMS-CMOS oscillator. J Microelectromech S 24, 1 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Forstner et al., Cavity optomechanical magnetometer. Phys. Rev. Lett. 108, 120801 (2012)CrossRefGoogle Scholar
  5. 5.
    S. Forstner et al., Ultrasensitive optical magnetometry. Adv. Mater. 26, 6348 (2014)CrossRefGoogle Scholar
  6. 6.
    D.L. Sage et al., Efficient photon detection from color centers in a diamond optical waveguide. Phys. Rev. B Rapid 85, 121202(R) (2012)CrossRefGoogle Scholar
  7. 7.
    S. Forstner et al., Sensitivity of cavity optomechanical field sensors. Proc SPIE 8439, 84390U (2012)CrossRefGoogle Scholar
  8. 8.
    L.P. Ichkitidze et al., Magnetic field sensors in medical diagnostics. Biomed. Eng. 48(6), 305–309 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Edelstein, Advances in magnetometry. J. Phys.: Condens. Matter 19, 165217 (2007)Google Scholar
  10. 10.
    A. Laraoui et al., Diamond nitrogen-vacancy center as a probe of random fluctuations in a nuclear spin ensemble. Phys. Rev. B 84, 104301 (2011)CrossRefGoogle Scholar
  11. 11.
    D. Rühmer et al., Vector fluxgate magnetometer for high operation temperatures up to 250 °C. Sens. Actuat. A-Phys. 228(1), 118–124 (2015)CrossRefGoogle Scholar
  12. 12.
    H. Can, U. Topal, Design of ring core fluxgate magnetometer as attitude control sensor for low and high orbit satellites. J. Supercond. Nov. Magn. 28(3), 1093–1096 (2015)CrossRefGoogle Scholar
  13. 13.
    I. Kovacic, M.J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behavior (Wiley, London, 2011)Google Scholar
  14. 14.
    M.B. Moffett et al., Characterization of Terfenol-D for magnetostrictive transducers. J. Acoust. Sec. Am. 89(3), 1448–1455 (1991)CrossRefGoogle Scholar
  15. 15.
    G. Engdahl, Handbook of Gieant Magnetostrictive Materials (Academic Press, San Diego, 2000)Google Scholar
  16. 16.
    A. Schliesser et al., Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat. Phys. 5, 509–514 (2009)CrossRefGoogle Scholar
  17. 17.
    W.P. Bowen, G.J. Milburn, Quantum Optomechanics (CRC Press, Taylor & Francis Publishing, London, 2015)Google Scholar
  18. 18.
    C.W. Gardiner, M.J. Collett, Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761 (1985)MathSciNetCrossRefGoogle Scholar
  19. 19.
    T.P. Purdy et al., Observation of radiation pressure shot noise on a macroscopic object. Science 339(6121), 801–804 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Schreppler et al., Optically measuring force near the standard quantum limit. Science 344(6191), 1486–1489 (2014)CrossRefGoogle Scholar
  21. 21.
    L. Ding et al., High frequency GaAs nano-optomechanical disk resonator. Phys. Rev. Lett. 105, 263903 (2010)CrossRefGoogle Scholar
  22. 22.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 2nd edn. (Pergamon Press, New York, 1970)Google Scholar
  23. 23.
    M.H. Saad, Elasticity: Theory, Applications, and Numerics, 3nd edn. (Academic Press, New York, 2014)Google Scholar
  24. 24.
    D.K. Armani et al., Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003)CrossRefGoogle Scholar
  25. 25.
    T.J. Kippenberg et al., Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005)CrossRefGoogle Scholar
  26. 26.
    D.M. Dagenais et al., Elimination of residual signals and reduction of noise in a low-frequency magnetic fiber sensor. Appl. Phys. Lett. 53, 1474 (1988)CrossRefGoogle Scholar
  27. 27.
    M. Sawicki et al., Sensitive SQUID magnetometry for studying nanomagnetism. Semicond. Sci. Technol. 26(6), 064006 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    H.B. Dang et al., Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 97, 151110 (2010)CrossRefGoogle Scholar
  29. 29.
    M.V. Romalis, H.B. Dang, Atomic magnetometers for materials characterization. Mater. Today 14(6), 258–262 (2011)CrossRefGoogle Scholar
  30. 30.
    D. Budker, M. Romalis, Optical magnetometry. Nat. Phys. 3, 227–234 (2007)CrossRefGoogle Scholar
  31. 31.
    G. Balasubramanian et al., Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009)CrossRefGoogle Scholar
  32. 32.
    T. Wolf et al., A subpicotesla diamond magnetometer. arXiv:1411.6553 [quant-ph] (2014)
  33. 33.
    V. Shah et al., Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat. Photon. 1, 649–652 (2007)CrossRefGoogle Scholar
  34. 34.
    J.R. Kirtley et al., High-resolution scanning SQUID microscope. Appl. Phys. Lett. 66(9), 1138–1140 (1995)CrossRefGoogle Scholar
  35. 35.
    F. Baudenbacher et al., Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples. Appl. Phys. Lett. 82(20), 3487–3489 (2003)CrossRefGoogle Scholar
  36. 36.
    M.I. Faley et al., A new generation of the HTS multilayer dc-SQUID magnetometers and gradiometers. J. Phys: Conf. Ser. 43(1), 1199–1202 (2006)Google Scholar
  37. 37.
    A. Sandhu et al., Nano and micro Hall-effect sensors for room-temperature scanning hall probe microscopy. Microelectron. Eng. 73–74, 524–528 (2004)CrossRefGoogle Scholar
  38. 38.
    A. Sandhu et al., 50 nm hall sensors for room temperature scanning hall probe microscopy. Jpn. J. Appl. Phys. 43(2), 777–778 (2004)CrossRefGoogle Scholar
  39. 39.
    J.R. Maze et al., Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455(2), 644–648 (2008)CrossRefGoogle Scholar
  40. 40.
    L.M. Pham et al., Magnetic field imaging with nitrogen-vacancy ensembles. New J. Phys. 13, 045021 (2011)CrossRefGoogle Scholar
  41. 41.
    K. Jensen et al., Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 112, 160802 (2014)CrossRefGoogle Scholar
  42. 42.
    V.M. Acosta et al., Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond. Appl. Phys. Lett. 97(17), 174104 (2010)CrossRefGoogle Scholar
  43. 43.
    M. Vengalattore et al., High-resolution magnetometry with a Spinor Bose-Einstein condensate. Phys. Rev. Lett. 98(20), 200801 (2007)CrossRefGoogle Scholar
  44. 44.
    D. Shuxiang et al., Ultrahigh magnetic field sensitivity in laminates of TERFENOL-D and Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. Appl. Phys. Lett. 83(11), 2265 (2003)CrossRefGoogle Scholar
  45. 45.
    S. Forstner et al., Sensitivity and performance of cavity optomechanical field sensors. Photonic Sens. 2(3), 259–270 (2012)CrossRefGoogle Scholar
  46. 46.
    V. Demas, T.J. Lowery, Magnetic resonance for in vitro medical diagnostics: superparamagnetic nanoparticle-based magnetic relaxation switches. New J. Phys. 13, 025005 (2011)CrossRefGoogle Scholar
  47. 47.
    S. Steinert et al., Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4, 1607 (2013)CrossRefGoogle Scholar
  48. 48.
    L.S. Bouchard et al., Detection of the Meissner effect with a diamond magnetometer. New J. Phys. 13, 025017 (2011)CrossRefGoogle Scholar
  49. 49.
    M.S. Chang et al., Observation of Spinor dynamics in optically trapped Rb87 Bose-Einstein condensates. Phys. Rev. Lett. 92, 140403 (2004)CrossRefGoogle Scholar
  50. 50.
    K.B. Blagoev et al., Modelling the magnetic signature of neuronal tissue. Neuroimage 37, 137–148 (2007)CrossRefGoogle Scholar
  51. 51.
    M.P. Ledbetter et al., Near-zero-field nuclear magnetic resonance. Phys. Rev. Lett. 107(10), 107601 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Australian Centre for Engineered Quantum SystemsUniversity of QueenslandBrisbaneAustralia
  2. 2.National Key Laboratory of Tunable Laser TechnologyHarbin Institute of TechnologyHarbinChina

Personalised recommendations