Superconducting Quantum Interference Device (SQUID) Magnetometers

  • Matthias SchmelzEmail author
  • Ronny Stolz
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 19)


Direct Current Superconducting QUantum Interference Devices (dc SQUIDs) are sensors for the detection of magnetic flux or any physical quantity that can be transformed into magnetic flux. They consist of a superconducting loop interrupted by two resistively shunted Josephson tunnel junctions. Typically operated at 4.2 K, they exhibit magnetic flux noise levels of the order of 1 μΦ0/Hz1/2, corresponding to a noise energy of 10−32 J/Hz1/2. They can be used for example as magnetometers, magnetic gradiometers, current sensors and voltmeters, susceptometers or (rf) amplifier. With their large bandwidth and flat frequency response ranging from dc to GHz, they are excellent suited for a wide variety of applications, such as e.g. biomagnetism and geophysical exploration to the detection of gravity waves and magnetic resonance.


Josephson Junction Junction Capacitance Rapid Single Flux Quantum Input Coil Flux Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors highly acknowledge Dr. S. Anders for careful proofreading and many stimulating discussions.


  1. 1.
    M. Tinkham, Introduction to Superconductivity (Dover Publications, USA, 1996)Google Scholar
  2. 2.
    W. Buckel, R. Kleiner, Superconductivity (Wiley-VCH, Weinheim, 2008)Google Scholar
  3. 3.
    H. Weinstock, Squid Sensors: Fundamentals, Fabrication, and Applications (Kluwer Academic Publishers, Dordrecht, 1996)Google Scholar
  4. 4.
    J. Clarke, A.I. Braginski, The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems (Wiley-VCH, Weinheim, 2004)Google Scholar
  5. 5.
    J. Clarke, A.I. Braginski, The SQUID Handbook: Applications of SQUIDs and SQUID Systems (Wiley-VCH, Weinheim, 2006)Google Scholar
  6. 6.
    P. Seidel, Applied Superconductivity: Handbook on Devices and Applications (Wiley, Hoboken, 2015)Google Scholar
  7. 7.
    R. Jaklevic, J. Lambe, A. Silver, J. Mercereau, Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12, 159–160 (1964)CrossRefGoogle Scholar
  8. 8.
    B.D. Josephson, Possible new effects in superconductive tunneling. Phys. Lett. 1, 251–253 (1962)CrossRefzbMATHGoogle Scholar
  9. 9.
    D.E. McCumber, Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions. J. Appl. Phys. 39, 3113–3118 (1968)CrossRefGoogle Scholar
  10. 10.
    W.C. Stewart, Current-voltage characteristics of Josephson junctions. Appl. Phys. Lett. 12, 277–280 (1968)CrossRefGoogle Scholar
  11. 11.
    C.M. Falco, W.H. Parker, S.E. Trullinger, P.K. Hansma, Effect of thermal noise on current-voltage characteristics of Josephson junctions. Phys. Rev. B. 10, 1865–1873 (1974)CrossRefGoogle Scholar
  12. 12.
    R.F. Voss, Noise characteristics of an ideal shunted Josephson junction. J. Low Temp. Phys. 42, 151–163 (1981)CrossRefGoogle Scholar
  13. 13.
    C.D. Tesche, J. Clarke, dc SQUID: noise and optimization. J. Low Temp. Phys. 29, 301–331 (1977)CrossRefGoogle Scholar
  14. 14.
    M.B. Ketchen, D.D. Awschalom, W.J. Gallagher, A.W. Kleinsasser, R.L. Sandstrom, J.R. Rozen, B. Bumble, Design, fabrication, and performance of integrated miniature SQUID susceptometers. Trans. Magn. IEEE 25, 1212–1215 (1989)CrossRefGoogle Scholar
  15. 15.
    R.H. Koch, J. Clarke, W.M. Goubau, J.M. Martinis, C.M. Pegrum, D.J. Harlingen, Flicker (1/f) noise in tunnel junction dc SQUIDS. J. Low Temp. Phys. 51, 207–224 (1983)CrossRefGoogle Scholar
  16. 16.
    S. Machlup, Noise in semiconductors—spectrum of a two-parameter random signal. J. Appl. Phys. 25, 341–343 (1954)CrossRefzbMATHGoogle Scholar
  17. 17.
    M.A. Washington, T.A. Fulton, Observation of flux trapping threshold in narrow superconducting thin films. Appl. Phys. Lett. 40, 848–850 (1982)CrossRefGoogle Scholar
  18. 18.
    G. Stan, S. Field, J.M. Martinis, Critical field for complete vortex expulsion from narrow superconducting strips. Phys. Rev. Lett. 92, 097003 (2004)CrossRefGoogle Scholar
  19. 19.
    K. Kuit, J. Kirtley, W. van der Veur, C. Molenaar, F. Roesthuis, A. Troeman, J. Clem, H. Hilgenkamp, H. Rogalla, J. Flokstra, Vortex trapping and expulsion in thin-film YBa2Cu3O7−δ strips. Phys. Rev. B. 77, 134504 (2008)CrossRefGoogle Scholar
  20. 20.
    R.H. Koch, D. DiVincenzo, J. Clarke, Model for 1/f flux noise in SQUIDs and qubits. Phys. Rev. Lett. 98, 267003 (2007)CrossRefGoogle Scholar
  21. 21.
    M.B. Ketchen, W.J. Gallagher, A.W. Kleinsasser, S. Murphy and J.R. Clem, in dc SQUID Flux Focused, ed by H.D. Hahlbohm, H. Lübbig. SQUID ‘85—Superconducting Quantum Interference Devices and their Applications (De Gruyter, 1986), pp. 865–871Google Scholar
  22. 22.
    J.R. Kirtley, Fundamental studies of superconductors using scanning magnetic imaging. Rep. Prog. Phys. 73, 126501 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Vrba, J. Nenonen, L. Trahms, in Biomagnetism, ed by J. Clarke, A.I. Braginski. The SQUID Handbook: Applications of SQUIDs and SQUID Systems (Wiley-VCH, Weinheim, 2006), pp. 269–389Google Scholar
  24. 24.
    H. Nowak, in SQUIDs in Biomagnetism, ed by P. Seidel. Applied Superconductivity: Handbook on Devices and Applications (Wiley, Hoboken, 2015), pp. 992–1019Google Scholar
  25. 25.
    T.R. Clem, C.P. Foley, M.N. Keene, in SQUIDs for Geophysical Survey and Magnetic Anomaly Detection, ed by J. Clarke, A.I. Braginski. The SQUID Handbook: Applications of SQUIDs and SQUID Systems (Wiley-VCH, Weinheim, 2006), pp. 481–543Google Scholar
  26. 26.
    R. Stolz, in Geophysical Exploration, ed by P. Seidel. Applied Superconductivity: Handbook on Devices and Applications (Wiley, Hoboken, 2015), pp. 1020–1041Google Scholar
  27. 27.
    R. Kraus, M. Espy, P. Magnelind, P. Volegov, Ultra-Low Field Nuclear Magnetic Resonance: A New MRI Regime (Oxford University Press, USA, 2014)CrossRefGoogle Scholar
  28. 28.
    J.M. Jaycox, M.B. Ketchen, Planar coupling scheme for ultra low noise dc SQUIDs. Trans. Magn. IEEE 17, 400–403 (1981)CrossRefGoogle Scholar
  29. 29.
    M.B. Ketchen, Integrated thin-film dc SQUID sensors. Trans. Magn. IEEE 23, 1650–1657 (1987)CrossRefGoogle Scholar
  30. 30.
    J. Knuutila, M. Kajola, H. Seppä, R. Mutikainen, J. Salmi, Design, optimization, and construction of a dc SQUID with complete flux transformer circuits. J. Low Temp. Phys. 71, 369–392 (1988)CrossRefGoogle Scholar
  31. 31.
    R. Cantor, in dc SQUIDS: Design, optimization and practical applications, ed by H. Weinstock. Squid Sensors: Fundamentals, Fabrication, and Applications (Kluwer Academic Publishers, Dordrecht/Boston/London, 1996), pp. 179–233Google Scholar
  32. 32.
    J. Clarke, in SQUID fundamentals, ed by H. Weinstock. SQUID Sensors: Fundamentals, Fabrication and Applications (Kluwer Academic Publishers, Dordrecht/Boston/London, 1996), pp. 1–62Google Scholar
  33. 33.
    J.E. Zimmerman, Sensitivity enhancement of superconducting quantum interference devices through use of fractional-turn loops. J. Appl. Phys. 42, 4483–4487 (1971)CrossRefGoogle Scholar
  34. 34.
    F. Dettmann, W. Richter, G. Albrecht, W. Zahn, A monolithic thin film dc-SQUID. Physica Status Solidi (a). 51, K185–K188 (1979)Google Scholar
  35. 35.
    P. Carelli, V. Foglietti, Behavior of a multiloop dc superconducting quantum interference device. J. Appl. Phys. 53, 7592–7598 (1982)CrossRefGoogle Scholar
  36. 36.
    D. Drung, S. Knappe, H. Koch, Theory for the multiloop dc superconducting quantum interference device magnetometer and experimental verification. J. Appl. Phys. 77, 4088–4098 (1995)CrossRefGoogle Scholar
  37. 37.
    V. Zakosarenko, L. Warzemann, J. Schambach, K. Blüthner, K.H. Berthel, G. Kirsch, P. Weber, R. Stolz, Integrated LTS gradiometer SQUID systems for unshielded measurements in a disturbed environment. Supercond. Sci. Technol. 9, A112–A115 (1996)CrossRefGoogle Scholar
  38. 38.
    R. Stolz, L. Fritzsch, H.G. Meyer, LTS SQUID sensor with a new configuration. Supercond. Sci. Technol. 12, 806–808 (1999)CrossRefGoogle Scholar
  39. 39.
    D. Drung, in Advanced SQUID read-out electronics, ed by H. Weinstock. SQUID Sensors: Fundamentals, Fabrication and Applications (Kluwer Academic Publishers, Dordrecht/Boston/London, 1996), pp. 63–116Google Scholar
  40. 40.
    D. Drung, Low-frequency noise in low-Tc multiloop magnetometers with additional positive feedback. Appl. Phys. Lett. 67, 1474–1476 (1995)CrossRefGoogle Scholar
  41. 41.
    N. Oukhanski, R. Stolz, H.G. Meyer, High slew rate, ultrastable direct-coupled readout for dc superconducting quantum interference devices. Appl. Phys. Lett. 89, 063502 (2006)CrossRefGoogle Scholar
  42. 42.
    D. Drung, C. Hinnrichs, H.-J. Barthelmess, Low-noise ultra-high-speed dc SQUID readout electronics. Supercond. Sci. Technol. 19, S235–S241 (2006)CrossRefGoogle Scholar
  43. 43.
    D. Drung, R. Cantor, M. Peters, H.J. Scheer, H. Koch, Low-noise high-speed dc superconducting quantum interference device magnetometer with simplified feedback electronics. Appl. Phys. Lett. 57, 406–408 (1990)CrossRefGoogle Scholar
  44. 44.
    V. Foglietti, Double dc SQUID for flux-locked-loop operation. Appl. Phys. Lett. 59, 476–478 (1991)CrossRefGoogle Scholar
  45. 45.
    R.P. Welty, J.M. Martinis, Two-stage integrated SQUID amplifier with series array output. IEEE Trans. Appl. Supercond. 3, 2605–2608 (1993)CrossRefGoogle Scholar
  46. 46.
    M.E. Huber, P.A. Neil, R.G. Benson, D.A. Burns, A.F. Corey, C.S. Flynn, Y. Kitaygorodskaya, O. Massihzadeh, J.M. Martinis, G.C. Hilton, dc SQUID series array amplifiers with 120 MHz bandwidth. IEEE Trans. Appl. Supercond. 11, 1251–1256 (2001)CrossRefGoogle Scholar
  47. 47.
    J. Oppenländer, C. Häussler, N. Schopohl, Non Phi0 periodic macroscopic quantum interference in one-dimensional parallel Josephson junction arrays with unconventional grating structure. Phys. Rev. B. 63, 024511 (2000)CrossRefGoogle Scholar
  48. 48.
    C. Häussler, J. Oppenländer, N. Schopohl, Nonperiodic flux to voltage conversion of series arrays of dc superconducting quantum interference devices. J. Appl. Phys. 89, 1875 (2001)CrossRefGoogle Scholar
  49. 49.
    R. Cantor, F. Ludwig, in SQUID Fabrication Technology, ed by J. Clarke, A.I. Braginski. The SQUID Handbook vol. 1: Fundamentals and Technology of SQUIDs and SQUID systems (Wiley-VCH, Weinheim, 2004), pp. 93–126Google Scholar
  50. 50.
    H. Hayakawa, N. Yoshikawa, S. Yorozu, A. Fujimaki, Superconducting digital electronics. Proc. IEEE 92, 1549–1563 (2004)CrossRefGoogle Scholar
  51. 51.
    K.K. Likharev, Superconductor digital electronics. Physica C 482, 6–18 (2012)CrossRefGoogle Scholar
  52. 52.
    J.V. Gates, M.A. Washington, M. Gurvitch, Critical current uniformity and stability of Nb/Al–oxide–Nb Josephson junctions. J. Appl. Phys. 55, 1419 (1984)CrossRefGoogle Scholar
  53. 53.
    T. Lehnert, D. Billon, C. Grassl, K.H. Gundlach, Thermal annealing properties of Nb–Al/AlOx–Nb tunnel junctions. J. Appl. Phys. 72, 3165 (1992)CrossRefGoogle Scholar
  54. 54.
    S. Anders, M.G. Blamire, F.I. Buchholz, D.G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, et al. European roadmap on superconductive electronics—status and perspectives. Physica C: Superconductivity. 470, 2079–2126 (2010)Google Scholar
  55. 55.
    H.G. Meyer, L. Fritzsch, S. Anders, M. Schmelz, J. Kunert, G. Oelsner, in LTS Josephson Junctions and Circuits, ed by P. Seidel. Applied Superconductivity: Handbook on Devices and Applications (Wiley, Hoboken, 2015), pp. 281–297Google Scholar
  56. 56.
    H. Kroger, L.N. Smith, D.W. Jillie, Selective niobium anodization process for fabricating Josephson tunnel junctions. Appl. Phys. Lett. 39, 280–282 (1981)CrossRefGoogle Scholar
  57. 57.
    M. Gurvitch, M.A. Washington, H.A. Huggins, High quality refractory Josephson tunnel junctions utilizing thin aluminum layers. Appl. Phys. Lett. 42, 472–474 (1983)CrossRefGoogle Scholar
  58. 58.
    M. Maezawa, M. Aoyagi, H. Nakagawa, I. Kurosawa, S. Takada, Specific capacitance of Nb/AlOx/Nb Josephson junctions with critical current densities in the range of 0.1—18 kA/cm2. Appl. Phys. Lett. 66, 2134–2136 (1995)CrossRefGoogle Scholar
  59. 59.
    S. Anders, M. Schmelz, L. Fritzsch, R. Stolz, V. Zakosarenko, T. Schönau, H.G. Meyer, Sub-micrometer-sized, cross-type Nb–AlOx–Nb tunnel junctions with low parasitic capacitance. Supercond. Sci. Technol. 22, 064012 (2009)CrossRefGoogle Scholar
  60. 60.
    M. Schmelz, R. Stolz, V. Zakosarenko, S. Anders, L. Fritzsch, M. Schubert, H.G. Meyer, SQUIDs based on submicrometer-sized Josephson tunnel junctions fabricated in a cross-type technology. Supercond. Sci. Technol. 24, 015005 (2011)CrossRefGoogle Scholar
  61. 61.
    M. Schmelz, R. Stolz, V. Zakosarenko, T. Schönau, S. Anders, L. Fritzsch, M. Mück, H.G. Meyer, Field-stable SQUID magnetometer with sub-fT Hz−1/2 resolution based on sub-micrometer cross-type Josephson tunnel junctions. Supercond. Sci. Technol. 24, 065009 (2011)CrossRefGoogle Scholar
  62. 62.
    A. Chwala, J. Kingman, R. Stolz, M. Schmelz, V. Zakosarenko, S. Linzen, F. Bauer, M. Starkloff, M. Meyer, H.G. Meyer, Noise characterization of highly sensitive SQUID magnetometer systems in unshielded environments. Supercond. Sci. Technol. 26, 035017 (2013)CrossRefGoogle Scholar
  63. 63.
    J. Vrba, in SQUID Gradiometers in Real Environment, ed by H. Weinstock. Squid Sensors: Fundamentals, Fabrication, and Applications (Kluwer Academic Publishers, Dordrecht/Boston/London, 1996), pp. 117–178Google Scholar
  64. 64.
    K.P. Humphrey, T.J. Horton, M.N. Keene, Detection of mobile targets from a moving platform using an actively shielded, adaptively balanced SQUID gradiometer. IEEE Trans. Appl. Supercond. 15, 753–756 (2005)CrossRefGoogle Scholar
  65. 65.
    R. Stolz, Supraleitende Quanten-interferenzdetektor-Gradiometer-Systeme für den geophysikalischen Einsatz (University Jena, Jena, 2006)Google Scholar
  66. 66.
    B. Muhlfelder, W. Johnson, M.W. Cromar, Double transformer coupling to a very low noise SQUID. IEEE Trans. Magn. 19, 303–307 (1983)CrossRefGoogle Scholar
  67. 67.
    I.K. Harvey, A precise low temperature dc ratio transformer. Rev. Sci. Instrum. 43, 1626–1629 (1972)CrossRefGoogle Scholar
  68. 68.
    F. Gay, F. Piquemal, G. Geneves, Ultralow noise current amplifier based on a cryogenic current comparator. Rev. Sci. Instrum. 71, 4592–4595 (2000)CrossRefGoogle Scholar
  69. 69.
    C. Granata, A. Vettoliere, M. Russo, An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications. Rev. Sci. Instrum. 82, 013901 (2011)CrossRefGoogle Scholar
  70. 70.
    J. Luomahaara, M. Kiviranta, J. Hassel, A large winding-ratio planar transformer with an optimized geometry for SQUID ammeter. Supercond. Sci. Technol. 25, 035006 (2012)CrossRefGoogle Scholar
  71. 71.
    V. Zakosarenko, M. Schmelz, R. Stolz, T. Schönau, L. Fritzsch, S. Anders, H.G. Meyer, Femtoammeter on the base of SQUID with thin-film flux transformer. Supercond. Sci. Technol. 25, 095014 (2012)CrossRefGoogle Scholar
  72. 72.
    W. Wernsdorfer, in Classical and Quantum Magnetization Reversal Studied in Nanometer-Sized Particles and Clusters. Advances in Chemical Physics (Wiley, Hoboken, 2001), pp. 99–190Google Scholar
  73. 73.
    W. Wernsdorfer, Molecular magnets: a long-lasting phase. Nat. Mater. 6, 174–176 (2007)CrossRefGoogle Scholar
  74. 74.
    P. Bushev, D. Bothner, J. Nagel, M. Kemmler, K.B. Konovalenko, A. Lörincz, K. Ilin, M. Siegel, D. Koelle, R. Kleiner, F. Schmidt-Kaler, Trapped electron coupled to superconducting devices. Eu Phys. J. D. 63, 9–16 (2011)CrossRefGoogle Scholar
  75. 75.
    M. Schmelz, R. Stolz, V. Zakosarenko, S. Anders, L. Fritzsch, H. Roth, H.G. Meyer, Highly sensitive miniature SQUID magnetometer fabricated with cross-type Josephson tunnel junctions. Physica C 476, 77–80 (2012)CrossRefGoogle Scholar
  76. 76.
    K. Hasselbach, C. Veauvy, D. Mailly, MicroSQUID magnetometry and magnetic imaging. Physica C 332, 140–147 (2000)CrossRefGoogle Scholar
  77. 77.
    S.K.H. Lam, D.L. Tilbrook, Development of a niobium nanosuperconducting quantum interference device for the detection of small spin populations. Appl. Phys. Lett. 82, 1078 (2003)CrossRefGoogle Scholar
  78. 78.
    A.G.P. Troeman, H. Derking, B. Borger, J. Pleikies, D. Veldhuis, H. Hilgenkamp, NanoSQUIDs based on niobium constrictions. Nano Lett. 7, 2152–2156 (2007)CrossRefGoogle Scholar
  79. 79.
    L. Hao, J.C. Macfarlane, J.C. Gallop, D. Cox, J. Beyer, D. Drung, T. Schurig, Measurement and noise performance of nano-superconducting-quantum-interference devices fabricated by focused ion beam. Appl. Phys. Lett. 92, 192507 (2008)CrossRefGoogle Scholar
  80. 80.
    D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M.L. Rappaport, M.E. Huber, E. Zeldov, A scanning superconducting quantum interference device with single electron spin sensitivity. Nat Nano. 8, 639–644 (2013)CrossRefGoogle Scholar
  81. 81.
    J. Nagel, O.F. Kieler, T. Weimann, R. Wölbing, J. Kohlmann, A.B. Zorin, R. Kleiner, D. Koelle, M. Kemmler, Superconducting quantum interference devices with submicron Nb/HfTi/Nb junctions for investigation of small magnetic particles. Appl. Phys. Lett. 99, 032506 (2011)CrossRefGoogle Scholar
  82. 82.
    M. Schmelz, Y. Matsui, R. Stolz, V. Zakosarenko, T. Schönau, S. Anders, S. Linzen, H. Itozaki, H.G. Meyer, Investigation of all niobium nano-SQUIDs based on sub-micrometer cross-type Josephson junctions. Supercond. Sci. Technol. 28, 015004 (2015)CrossRefGoogle Scholar
  83. 83.
    D. Drung, Digital feedback loops for dc SQUIDs. Cryogenics 26, 623–627 (1986)CrossRefGoogle Scholar
  84. 84.
    H. Matz, D. Drung, E. Crocoll, R. Herwig, E. Kramer, M. Neuhaus, W. Jutzi, Integrated magnetometer with a digital output. Trans. Magn. IEEE 27, 2979–2982 (1991)CrossRefGoogle Scholar
  85. 85.
    N. Fujimaki, K. Gotoh, T. Imamura, S. Hasuo, Thermal-noise-limited performance in single-chip superconducting quantum interference devices. J. Appl. Phys. 71, 6182 (1992)CrossRefGoogle Scholar
  86. 86.
    T. Reich, P. Febvre, T. Ortlepp, F.H. Uhlmann, J. Kunert, R. Stolz, H.G. Meyer, Experimental study of a hybrid single flux quantum digital superconducting quantum interference device magnetometer. J. Appl. Phys. 104, 024509 (2008)CrossRefGoogle Scholar
  87. 87.
    T. Schönau, M. Schmelz, V. Zakosarenko, R. Stolz, M. Meyer, S. Anders, L. Fritzsch, H.G. Meyer, SQUID-based setup for the absolute measurement of the Earth’s magnetic field. Supercond. Sci. Technol. 26, 035013 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Leibniz Institute of Photonic TechnologyJenaGermany

Personalised recommendations