Skip to main content

Induction Coil Magnetometers

  • Chapter
  • First Online:
High Sensitivity Magnetometers

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 19))

Abstract

This chapter describes induction magnetometers with air-core coils for weak magnetic fields detection. In order to explain the historical background, the introduction provides the useful references through the author’s experiences. Two detection models, the voltage and current detection model, can help to understand of the operational principle. Because the key components are the coils and electronics, practically useful design tips are summarized. Some experimental demonstration results with well-designed induction magnetometers are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.C. Seran, P. Fergeau, An optimized low-frequency three-axis search coil magnetometer for space research. Rev. Sci. Instrum. 76, 044502 (2005)

    Article  Google Scholar 

  2. V.E. Korepanov, The modern trends in space electromagnetic instrumentation. Adv. Space Res. 32, 401–406 (2003)

    Article  Google Scholar 

  3. A. Roux, O. Le Contel, C. Coillot, A. Bouabdellah, B. de la Porte, D. Alison, S. Ruocco, M.C. Vassal, The search coil magnetometer for THEMIS. Space Sci. Rev. 141, 265–275 (2008)

    Article  Google Scholar 

  4. C. Coillot, J. Moutoussamy, R. Lebourgeois, S. Ruocco, G. Chanteur, Principle and performance of a dual-band search coil magnetometer: a new instrument to investigate fluctuating magnetic fields in space. IEEE Sens. J. 10, 255–260 (2010)

    Article  Google Scholar 

  5. E. Paperno, A. Grosz, A miniature and ultralow power search coil optimized for a 20 mHz to 2 kHz frequency range. J. Appl. Phys. 105, 07E708 (2009)

    Article  Google Scholar 

  6. V. Korepanov, R. Berkman, L. Rakhlin, Y. Klymovych, A. Prystai, A. Marussenokov, M. Afanassenko, Advanced field magnetometers comparative study. Measurement 29, 137–146 (2001)

    Article  Google Scholar 

  7. J. Lenz, A.S. Edelstein, Magnetic sensors and their applications. IEEE Sens. J. 6, 631–649 (2006)

    Article  Google Scholar 

  8. S. Tumanski, Induction coil sensors—a review. Meas. Sci. Technol. 18, R31–R46 (2007)

    Article  Google Scholar 

  9. P. Ripka, Magnetic sensors and magnetometers: Artech house (2001)

    Google Scholar 

  10. G. Müsmann, Y. Afanassiev, Fluxgate magnetometers for space research, BoD (2010)

    Google Scholar 

  11. S. Tumanski, Handbook of magnetic measurement, CRC Press, USA (2011)

    Google Scholar 

  12. G. Baule, R. Mcfee, Detection of magnetic field of heart. Am. Heart J. 66, 95–96 (1963)

    Article  Google Scholar 

  13. D. Cohen, Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science, 161 (1968)

    Google Scholar 

  14. K. Tashiro, H. Wakiwaka, G. Hattori, Estimation of effective permeability for dumbbell-shaped magnetic cores. IEEE Transac. Magnet. 51(1), 4, (2015) (to be published)

    Google Scholar 

  15. D. Cohen, A shielded facility for low-level magnetic measurements. J. Appl. Phys. 38, 1295–1296 (1967)

    Article  Google Scholar 

  16. K. Tashiro, S. Inoue, H. Wakiwaka, Advancement in sensing technology: new developments and practical applications (Chapter 9: Design of induction gradiometer for MCG measurement) vol. 1 (Springer, Berlin, 2013), pp. 139–164

    Google Scholar 

  17. K. Tashiro, H. Wakiwaka, K. Matsumura, K. Okano, Desktop magnetic shielding system for the calibration of high-sensitivity magnetometers. IEEE Trans. Magn. 47, 4270–4273 (2011)

    Article  Google Scholar 

  18. K. Tashiro, K. Nagashima, A. Sumida, T. Fukunaga, I. Sasada, Spontaneous magnetoencephalography alpha rhythm measurement in a cylindrical magnetic shield employing magnetic shaking. J Appl Phys, vol. 93, no. 15, pp. 6733–6735, 2003

    Google Scholar 

  19. K. Tashiro, Optimal design of an air-core induction magnetometer for detecting low-frequency fields of less than 1 pT. J. Magn. Soc. Jpn. 30, 439–442 (2006)

    Article  Google Scholar 

  20. R.J. Prance, T.D. Clark, H. Prance, Compact room-temperature induction magnetometer with superconducting quantum interference device level field sensitivity. Rev. Sci. Instrum. 74, 3735–3739 (2003)

    Article  Google Scholar 

  21. S.A. Macintyre, A portable low-noise low-frequency 3-axis search coil magnetometer. IEEE Trans. Magn. 16, 761–763 (1980)

    Article  Google Scholar 

  22. K. Tashiro, H. Wakiwaka, A. Kakiuchi, A. Matsuoka, Comparative study of air-core coil design for induction magnetometer with current-to-voltage converter, in Proceedings of second international conference on sensing technology (ICST2007) (2007), pp. 590–594

    Google Scholar 

  23. K.P. Estola, J. Malmivuo, Air-core induction-coil magnetometer design. J. Phys. E-Sci Instrum 15, 1110–1113 (1982)

    Article  Google Scholar 

  24. J.P. Wiksow, P.C. Samon, R.P. Giffard, A low-noise low imput impedance amplifier for magnetic measurements of nerve action currents. IEEE Transac. Biomed. Eng. BME-30, pp. 215–221 (1983)

    Google Scholar 

  25. M.C. Leifer, J.P. Wikswo, Optimization of a clip-on squid current probe. Rev. Sci. Instrum. 54, 1017–1022 (1983)

    Article  Google Scholar 

  26. A. Kandori, D. Suzuki, K. Yokosawa, A. Tsukamoto, T. Miyashita, K. Tsukada, K. Takagi, A superconducting quantum interference device magnetometer with a room-temperature pickup coil for measuring impedance magnetocardiograms. Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Rev. Papers 41, 596–599 (2002)

    Google Scholar 

  27. R. Sklyar, Superconducting induction magnetometer. IEEE Sens. J. 6, 357–364 (2006)

    Article  Google Scholar 

  28. K. Tashiro, S. Inoue, H. Wakiwaka, Sensitivity limits of a magnetometer with an air-core pickup coil. Sens. Transduc. J. 9, 171–181 (2010)

    Google Scholar 

  29. K. Tashiro, I. Sasada, Contact less current sensor with magnetic shaking techniquie (Preliminary studies on ultra-low noise induction sensor). JSAEM Stud. Appl. Electromagnet. Mech. 15, 35–40 (2005)

    Google Scholar 

  30. F.W. Grover, Inductance calculations: dover phenix editions (2004)

    Google Scholar 

  31. K. Kajikawa, K. Kaiho, Usable range of some expression for calculation of the self-inductance of a circular coil of rectangular cross section. TEIONKOHGAKU 30, 324–332 (1995). (in Japanese) (This article improved previous work given by J. Hak: El. u. Maschinenb. 51, 477 (1933))

    Google Scholar 

  32. H. Hastings, Approximations for digital computers (Sheet No. 46 and 49), Princeton, (1955). (This information referred to a Japanese book: S. Moriguchi, K. Udagawa and S. Hitomatsu, “IWANAMI SUUGAKU KOUSHIKI”, Iwanami publishing, 22th edition, Vol. III, pp. 79–81, 2010)

    Google Scholar 

  33. K. Tashiro, H. Wakiwaka, T. Mori, R. Nakano, N.H. Harun, N. Misron, Sensing technology: current status and future trends IV (Chapter 7: Experimental Confirmation of Cylindrical Electromagnetic Sensor Design for Liquid Detection Application) (Springer, Berlin, 2014), pp. 119–137

    Google Scholar 

  34. K. Tashiro, A. Kakiuchi, A. Matsuoka, H. Wakiwaka, A magnetic contamination detection system based on a high sensitivity induction gradiometer. J. Jpn. Soc Appl Electromag. Mech. 17, S129–S132 (2009)

    Google Scholar 

  35. K. Tashiro, Proposal of coil structure for air-core induction magnetometer. Proc. IEEE Sens. 2006, 939–942 (2006)

    Google Scholar 

  36. Linear Technology, LT1028, Data sheet

    Google Scholar 

  37. R.J. Prance, T.D. Clark, H. Prance, Compact broadband gradiometric induction magnetometer system. Sens. Actuators a-Phys. 76, 117–121 (1999)

    Article  Google Scholar 

  38. K. Tashiro, Broadband air-core Brooks-coil induction magnetometer. SICE - ICASE 2006, 179–182 (2006)

    Google Scholar 

  39. K. Tashiro, H. Wakiwaka, S. Inoue, Electrical interference with pickup coil in induction magnetometer, in Proceedings of the 2011 Fifth International Conference on Sensing Technology (ICST2011) (2011), vol. 90–93

    Google Scholar 

  40. K. Tashiro, S. Inoue, H. Wakiwaka, H. Yasui, H. Kinoshita, Induction magnetometer in MHz range operation. Sens. Lett. 11, 153–156 (2013)

    Article  Google Scholar 

  41. K. Tashiro, S. Inoue, Y. Uchiyama, H. Wakiwaka, H. Yasui, H Kinoshita, Induction magnetometer with a metal shielded pickup coil for MHz range operation. IEE J. Transac. Fundam. Mat. 131(7), 490–498 (2010) (in Japanese) doi:10.1541/ieejfms.131.490

  42. K. Tashiro, S. Inoue, K. Matsumura, H. Wakiwaka, A magnetic contamination detection system with a differential input type current-to-voltage converter, in The Fourth Japan-US Symposium on Emerging NDE Cabpabilities for a Safer World (2010), pp. 94–99

    Google Scholar 

  43. K. Tashiro, A. Ikegami, S. Shimada, H. Kojima, H. Wakiwaka, Design of self-generating component powered by magnetic energy harvesting—magnetic field alarm (Springer, Berlin, 2015), 21 pages (to be published)

    Google Scholar 

Download references

Acknowledgements

I would like to great thank Prof. S.C. Mukhopadhyay, “Chandra-san” for me, in Massey University for providing this opportunity to summary the 10 years’ study of induction magnetometers, and continuous supports when we were supervised by Prof. S. Yamada in Kanazawa University. I’d like to great thank Prof. I. Sasada in Kyushu University for giving an interested study topic related to magnetic shield which led to study this induction magnetometers. I’d like to great thank Prof. H. Wakiwaka in Shinshu University for valuable discussions related to not only magnetic sensors but also magnetic shield, actuator and other magnetic applications. I’d like to special thank students who supported this continuous study; Mr. A. Kakiuchi, A. Matsuoka, S. Inoue, Y. Uchiyama and T. Yamamoto and other students who belonged to our laboratory. It needed 10 years’ study to detect a MCG signal form a human heart. It will be my great pleasure if this summary will help to lead the future success related to induction magnetometers given by young researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihisa Tashiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tashiro, K. (2017). Induction Coil Magnetometers. In: Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-34070-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34070-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34068-5

  • Online ISBN: 978-3-319-34070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics