Induction Coil Magnetometers

  • Kunihisa TashiroEmail author
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 19)


This chapter describes induction magnetometers with air-core coils for weak magnetic fields detection. In order to explain the historical background, the introduction provides the useful references through the author’s experiences. Two detection models, the voltage and current detection model, can help to understand of the operational principle. Because the key components are the coils and electronics, practically useful design tips are summarized. Some experimental demonstration results with well-designed induction magnetometers are also mentioned.


Output Voltage Cutoff Frequency Detection Model Input Resistance Pickup Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to great thank Prof. S.C. Mukhopadhyay, “Chandra-san” for me, in Massey University for providing this opportunity to summary the 10 years’ study of induction magnetometers, and continuous supports when we were supervised by Prof. S. Yamada in Kanazawa University. I’d like to great thank Prof. I. Sasada in Kyushu University for giving an interested study topic related to magnetic shield which led to study this induction magnetometers. I’d like to great thank Prof. H. Wakiwaka in Shinshu University for valuable discussions related to not only magnetic sensors but also magnetic shield, actuator and other magnetic applications. I’d like to special thank students who supported this continuous study; Mr. A. Kakiuchi, A. Matsuoka, S. Inoue, Y. Uchiyama and T. Yamamoto and other students who belonged to our laboratory. It needed 10 years’ study to detect a MCG signal form a human heart. It will be my great pleasure if this summary will help to lead the future success related to induction magnetometers given by young researchers.


  1. 1.
    H.C. Seran, P. Fergeau, An optimized low-frequency three-axis search coil magnetometer for space research. Rev. Sci. Instrum. 76, 044502 (2005)CrossRefGoogle Scholar
  2. 2.
    V.E. Korepanov, The modern trends in space electromagnetic instrumentation. Adv. Space Res. 32, 401–406 (2003)CrossRefGoogle Scholar
  3. 3.
    A. Roux, O. Le Contel, C. Coillot, A. Bouabdellah, B. de la Porte, D. Alison, S. Ruocco, M.C. Vassal, The search coil magnetometer for THEMIS. Space Sci. Rev. 141, 265–275 (2008)CrossRefGoogle Scholar
  4. 4.
    C. Coillot, J. Moutoussamy, R. Lebourgeois, S. Ruocco, G. Chanteur, Principle and performance of a dual-band search coil magnetometer: a new instrument to investigate fluctuating magnetic fields in space. IEEE Sens. J. 10, 255–260 (2010)CrossRefGoogle Scholar
  5. 5.
    E. Paperno, A. Grosz, A miniature and ultralow power search coil optimized for a 20 mHz to 2 kHz frequency range. J. Appl. Phys. 105, 07E708 (2009)CrossRefGoogle Scholar
  6. 6.
    V. Korepanov, R. Berkman, L. Rakhlin, Y. Klymovych, A. Prystai, A. Marussenokov, M. Afanassenko, Advanced field magnetometers comparative study. Measurement 29, 137–146 (2001)CrossRefGoogle Scholar
  7. 7.
    J. Lenz, A.S. Edelstein, Magnetic sensors and their applications. IEEE Sens. J. 6, 631–649 (2006)CrossRefGoogle Scholar
  8. 8.
    S. Tumanski, Induction coil sensors—a review. Meas. Sci. Technol. 18, R31–R46 (2007)CrossRefGoogle Scholar
  9. 9.
    P. Ripka, Magnetic sensors and magnetometers: Artech house (2001)Google Scholar
  10. 10.
    G. Müsmann, Y. Afanassiev, Fluxgate magnetometers for space research, BoD (2010)Google Scholar
  11. 11.
    S. Tumanski, Handbook of magnetic measurement, CRC Press, USA (2011)Google Scholar
  12. 12.
    G. Baule, R. Mcfee, Detection of magnetic field of heart. Am. Heart J. 66, 95–96 (1963)CrossRefGoogle Scholar
  13. 13.
    D. Cohen, Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science, 161 (1968)Google Scholar
  14. 14.
    K. Tashiro, H. Wakiwaka, G. Hattori, Estimation of effective permeability for dumbbell-shaped magnetic cores. IEEE Transac. Magnet. 51(1), 4, (2015) (to be published)Google Scholar
  15. 15.
    D. Cohen, A shielded facility for low-level magnetic measurements. J. Appl. Phys. 38, 1295–1296 (1967)CrossRefGoogle Scholar
  16. 16.
    K. Tashiro, S. Inoue, H. Wakiwaka, Advancement in sensing technology: new developments and practical applications (Chapter 9: Design of induction gradiometer for MCG measurement) vol. 1 (Springer, Berlin, 2013), pp. 139–164Google Scholar
  17. 17.
    K. Tashiro, H. Wakiwaka, K. Matsumura, K. Okano, Desktop magnetic shielding system for the calibration of high-sensitivity magnetometers. IEEE Trans. Magn. 47, 4270–4273 (2011)CrossRefGoogle Scholar
  18. 18.
    K. Tashiro, K. Nagashima, A. Sumida, T. Fukunaga, I. Sasada, Spontaneous magnetoencephalography alpha rhythm measurement in a cylindrical magnetic shield employing magnetic shaking. J Appl Phys, vol. 93, no. 15, pp. 6733–6735, 2003Google Scholar
  19. 19.
    K. Tashiro, Optimal design of an air-core induction magnetometer for detecting low-frequency fields of less than 1 pT. J. Magn. Soc. Jpn. 30, 439–442 (2006)CrossRefGoogle Scholar
  20. 20.
    R.J. Prance, T.D. Clark, H. Prance, Compact room-temperature induction magnetometer with superconducting quantum interference device level field sensitivity. Rev. Sci. Instrum. 74, 3735–3739 (2003)CrossRefGoogle Scholar
  21. 21.
    S.A. Macintyre, A portable low-noise low-frequency 3-axis search coil magnetometer. IEEE Trans. Magn. 16, 761–763 (1980)CrossRefGoogle Scholar
  22. 22.
    K. Tashiro, H. Wakiwaka, A. Kakiuchi, A. Matsuoka, Comparative study of air-core coil design for induction magnetometer with current-to-voltage converter, in Proceedings of second international conference on sensing technology (ICST2007) (2007), pp. 590–594Google Scholar
  23. 23.
    K.P. Estola, J. Malmivuo, Air-core induction-coil magnetometer design. J. Phys. E-Sci Instrum 15, 1110–1113 (1982)CrossRefGoogle Scholar
  24. 24.
    J.P. Wiksow, P.C. Samon, R.P. Giffard, A low-noise low imput impedance amplifier for magnetic measurements of nerve action currents. IEEE Transac. Biomed. Eng. BME-30, pp. 215–221 (1983)Google Scholar
  25. 25.
    M.C. Leifer, J.P. Wikswo, Optimization of a clip-on squid current probe. Rev. Sci. Instrum. 54, 1017–1022 (1983)CrossRefGoogle Scholar
  26. 26.
    A. Kandori, D. Suzuki, K. Yokosawa, A. Tsukamoto, T. Miyashita, K. Tsukada, K. Takagi, A superconducting quantum interference device magnetometer with a room-temperature pickup coil for measuring impedance magnetocardiograms. Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Rev. Papers 41, 596–599 (2002)Google Scholar
  27. 27.
    R. Sklyar, Superconducting induction magnetometer. IEEE Sens. J. 6, 357–364 (2006)CrossRefGoogle Scholar
  28. 28.
    K. Tashiro, S. Inoue, H. Wakiwaka, Sensitivity limits of a magnetometer with an air-core pickup coil. Sens. Transduc. J. 9, 171–181 (2010)Google Scholar
  29. 29.
    K. Tashiro, I. Sasada, Contact less current sensor with magnetic shaking techniquie (Preliminary studies on ultra-low noise induction sensor). JSAEM Stud. Appl. Electromagnet. Mech. 15, 35–40 (2005)Google Scholar
  30. 30.
    F.W. Grover, Inductance calculations: dover phenix editions (2004)Google Scholar
  31. 31.
    K. Kajikawa, K. Kaiho, Usable range of some expression for calculation of the self-inductance of a circular coil of rectangular cross section. TEIONKOHGAKU 30, 324–332 (1995). (in Japanese) (This article improved previous work given by J. Hak: El. u. Maschinenb. 51, 477 (1933))Google Scholar
  32. 32.
    H. Hastings, Approximations for digital computers (Sheet No. 46 and 49), Princeton, (1955). (This information referred to a Japanese book: S. Moriguchi, K. Udagawa and S. Hitomatsu, “IWANAMI SUUGAKU KOUSHIKI”, Iwanami publishing, 22th edition, Vol. III, pp. 79–81, 2010)Google Scholar
  33. 33.
    K. Tashiro, H. Wakiwaka, T. Mori, R. Nakano, N.H. Harun, N. Misron, Sensing technology: current status and future trends IV (Chapter 7: Experimental Confirmation of Cylindrical Electromagnetic Sensor Design for Liquid Detection Application) (Springer, Berlin, 2014), pp. 119–137Google Scholar
  34. 34.
    K. Tashiro, A. Kakiuchi, A. Matsuoka, H. Wakiwaka, A magnetic contamination detection system based on a high sensitivity induction gradiometer. J. Jpn. Soc Appl Electromag. Mech. 17, S129–S132 (2009)Google Scholar
  35. 35.
    K. Tashiro, Proposal of coil structure for air-core induction magnetometer. Proc. IEEE Sens. 2006, 939–942 (2006)Google Scholar
  36. 36.
    Linear Technology, LT1028, Data sheetGoogle Scholar
  37. 37.
    R.J. Prance, T.D. Clark, H. Prance, Compact broadband gradiometric induction magnetometer system. Sens. Actuators a-Phys. 76, 117–121 (1999)CrossRefGoogle Scholar
  38. 38.
    K. Tashiro, Broadband air-core Brooks-coil induction magnetometer. SICE - ICASE 2006, 179–182 (2006)Google Scholar
  39. 39.
    K. Tashiro, H. Wakiwaka, S. Inoue, Electrical interference with pickup coil in induction magnetometer, in Proceedings of the 2011 Fifth International Conference on Sensing Technology (ICST2011) (2011), vol. 90–93Google Scholar
  40. 40.
    K. Tashiro, S. Inoue, H. Wakiwaka, H. Yasui, H. Kinoshita, Induction magnetometer in MHz range operation. Sens. Lett. 11, 153–156 (2013)CrossRefGoogle Scholar
  41. 41.
    K. Tashiro, S. Inoue, Y. Uchiyama, H. Wakiwaka, H. Yasui, H Kinoshita, Induction magnetometer with a metal shielded pickup coil for MHz range operation. IEE J. Transac. Fundam. Mat. 131(7), 490–498 (2010) (in Japanese) doi: 10.1541/ieejfms.131.490
  42. 42.
    K. Tashiro, S. Inoue, K. Matsumura, H. Wakiwaka, A magnetic contamination detection system with a differential input type current-to-voltage converter, in The Fourth Japan-US Symposium on Emerging NDE Cabpabilities for a Safer World (2010), pp. 94–99Google Scholar
  43. 43.
    K. Tashiro, A. Ikegami, S. Shimada, H. Kojima, H. Wakiwaka, Design of self-generating component powered by magnetic energy harvesting—magnetic field alarm (Springer, Berlin, 2015), 21 pages (to be published)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Spin Device Technology Center (SDTC)Shinshu UniversityNaganoJapan

Personalised recommendations