Skip to main content

Abstract

Transcranial direct current stimulation (tDCS) is an increasingly promising potential therapeutic intervention in the treatment of a range of psychiatric and neurological conditions. However, before its full potential can be utilised more must be understood about its effects on the underlying brain tissue, both in regions local to the site of stimulation and those more anatomically distant. Magnetic resonance imaging approaches have the potential to study the modulation of brain activity by tDCS, and here we review the functional MRI and MR spectroscopy studies involving tDCS. We review the basis of the most commonly used approaches for both fMRI acquired at rest and during a task performance. We then go on to summarise the studies that have been performed to date in healthy controls and in patients with a range of psychiatric conditions, before discussing what conclusions can be drawn. It is to be hoped that this will prove a useful summary both for clinicians who wish to understand more about the neurophysiological basis of tDCS and for researchers who wish to perform their own tDCS/MR experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53.

    Article  PubMed  Google Scholar 

  2. Nitsche M, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127(2):1031–48.

    Article  CAS  PubMed  Google Scholar 

  4. Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–78.

    Article  CAS  PubMed  Google Scholar 

  5. Cole DM, Smith S, Beckmann C. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci. 2010;4:8.

    PubMed  PubMed Central  Google Scholar 

  6. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11.

    Article  CAS  PubMed  Google Scholar 

  7. Snyder AZ, Raichle ME. A brief history of the resting state: the Washington University perspective. Neuroimage. 2012;62(2):902–10.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98(2):676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA. 2009;106(31):13040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci. 2005;360(1457):1001–13.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Johansen-Berg H. Human connectomics—what will the future demand? Neuroimage. 2013;80(C):541–4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, et al. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci USA. 2009;106(17):7209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pievani M, de Hann W, Wu T, Seeley W, Frisoni G. Functional network disruption in the degenerative dementias. Lancet Neurol. 2011;10(9):829–43.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pievani M, Filippini N, van den Heuvel MP, Cappa SF, Frisoni GB. Brain connectivity in neurodegenerative diseases—from phenotype to proteinopathy. Nat Rev Neurol. 2014;10(11):620–33.

    Article  PubMed  Google Scholar 

  15. Fornito A, Zalesky A, Breakspear M. Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage. 2013;80(C):426–44.

    Article  PubMed  Google Scholar 

  16. Polanía R, Paulus W, Antal A, Nitsche MA. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. Neuroimage. 2011;54(3):2287–96.

    Article  PubMed  Google Scholar 

  17. Polanía R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp. 2012;33(10):2499–508.

    Article  PubMed  Google Scholar 

  18. Polanía R, Nitsche MA, Paulus W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp. 2011;32(8):1236–49.

    Article  PubMed  Google Scholar 

  19. Sehm B, Kipping J, Schäfer A, Villringer A, Ragert P. A comparison between uni- and bilateral tDCS effects on functional connectivity of the human motor cortex. Front Hum Neurosci. 2013;7:183.

    PubMed  PubMed Central  Google Scholar 

  20. Sehm B, Schafer A, Kipping J, Margulies D, Conde V, Taubert M, et al. Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation. J Neurophysiol. 2012;108(12):3253–63.

    Article  PubMed  Google Scholar 

  21. Amadi U, Ilie AS, Johansen-Berg H, Stagg CJ. Polarity-specific effects of motor transcranial direct current stimulation on fMRI resting state networks. Neuroimage. 2014;88:155–61.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bachtiar V, Near J, Johansen-Berg H, Stagg CJ. Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation. eLife. 2015;4:e08789.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Polanía R, Paulus W, Nitsche MA. Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non-invasive cortical stimulation. PLoS One. 2012;7, e30971.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sehm B et al. (2012) Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation. J Neurophysiol. 3253–63. doi:10.1152/jn.00606.2012

    Google Scholar 

  25. Amadi U, Ilie A, Johansen-Berg H, Stagg CJ. Polarity-specific effects of motor transcranial direct current stimulation on fMRI resting state networks. Neuroimage. 2013;88C:155–61.

    Google Scholar 

  26. Stagg CJ, Bachtiar V, Amadi U, Gudberg CA, Ilie AS, Sampaio-Baptista C, et al. Local GABA concentration is related to network-level resting functional connectivity. eLife. 2014;3:e01465.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stagg CJ et al. Local GABA concentration is related to network-level resting functional connectivity. Elife. 2014;3, e01465.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bachtiar V, Near J, Johansen-Berg H, Stagg CJ. Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation. Elife. 2015;4, e08789.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pereira JB et al. Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS) in Parkinson’s disease. Brain Stimul. 2013;6:16–24.

    Article  PubMed  Google Scholar 

  30. Minami SB et al. Auditory resting-state functional connectivity in tinnitus and modulation with transcranial direct current stimulation. Acta Otolaryngol. 2015;135:1–7.

    Article  Google Scholar 

  31. Meinzer M et al. Transcranial direct current stimulation in mild cognitive impairment: behavioral effects and neural mechanisms. Alzheimer’s Dement. 2015;11:1032–40.

    Article  Google Scholar 

  32. Meinzer M, Lindenberg R, Antonenko D, Flaisch T, Floel A. Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. J Neurosci. 2013;33:12470–8.

    Article  CAS  PubMed  Google Scholar 

  33. Park C et al. Transcranial direct current stimulation increases resting state interhemispheric connectivity. Neurosci Lett. 2013;539.

    Google Scholar 

  34. Clemens B et al. Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest. PLoS One. 2014;9, e95984.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Peña-Gómez C et al. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI. Brain Stimul. 2012;5:252–63.

    Article  PubMed  Google Scholar 

  36. Keeser D et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci. 2011;31:15284–93.

    Article  CAS  PubMed  Google Scholar 

  37. Meinzer M et al. Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. J Neurosci. 2012;32:1859–66.

    Article  CAS  PubMed  Google Scholar 

  38. Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci. 2009;29(16):5202–6.

    Article  CAS  PubMed  Google Scholar 

  39. Stagg CJ, Bachtiar V, Johansen-Berg H. The role of GABA in human motor learning. Curr Biol. 2011;21(6):480–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kapogiannis D, Reiter DA, Willette AA, Mattson MP. Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. Neuroimage. 2013;64(C):112–9.

    Article  CAS  PubMed  Google Scholar 

  41. Hunter MA, Coffman BA, Gasparovic C, Calhoun VD, Trumbo MC, Clark VP. Baseline effects of transcranial direct current stimulation on glutamatergic neurotransmission and large-scale network connectivity. Brain Res. 2015;1594:92–107.

    Article  CAS  PubMed  Google Scholar 

  42. Stagg CJ, O’Shea J, Kincses ZT, Woolrich M, Matthews PM, Johansen-Berg H. Modulation of movement-associated cortical activation by transcranial direct current stimulation. Eur J Neurosci. 2009;30(7):1412–23.

    Article  CAS  PubMed  Google Scholar 

  43. Stagg CJ et al. Cortical activation changes underlying stimulation-induced behavioural gains in chronic stroke. Brain. 2012;135:276–84.

    Article  PubMed  Google Scholar 

  44. Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 2010;75:2176–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lindenberg R, Nachtigall L, Meinzer M, Sieg MM, Floeel A. Differential effects of dual and unihemispheric motor cortex stimulation in older adults. J Neurosci. 2013;33(21):9176–83.

    Article  CAS  PubMed  Google Scholar 

  46. Meinzer M, Lindenberg R, Sieg MM, Nachtigall L, Ulm L, Flöel A. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults. Front Aging Neurosci. 2014;6:253.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Meinzer M et al. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults. Front Aging Neurosci. 2014;6:1–9.

    Article  Google Scholar 

  48. Ulm L, McMahon K, Copland D, de Zubicaray GI, Meinzer M. Neural mechanisms underlying perilesional transcranial direct current stimulation in aphasia: a feasibility study. Front Hum Neurosci. 2015;9:1–7.

    Article  Google Scholar 

  49. Holland R et al. Speech facilitation by left inferior frontal cortex stimulation. Curr Biol. 2011;21.

    Google Scholar 

  50. Alekseichuk I, Diers K, Paulus W, Antal A. Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: a combined tES–fMRI approach. Neuroimage. 2015. doi:10.1016/j.neuroimage.2015.11.034.

    PubMed  Google Scholar 

  51. Spiegel DP et al. Transcranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia. Neurotherapeutics. 2013;10:831–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kwon YH, Ko M-H, Ahn SH, Kim Y-H, Song JC, Lee C-H, et al. Primary motor cortex activation by transcranial direct current stimulation in the human brain. Neurosci Lett. 2008;435(1):56–9.

    Article  CAS  PubMed  Google Scholar 

  53. Antal A, Polanía R, Schmidt-Samoa C, Dechent P, Paulus W. Transcranial direct current stimulation over the primary motor cortex during fMRI. Neuroimage. 2011;55(2):590–6.

    Article  PubMed  Google Scholar 

  54. Jang SH et al. The effect of transcranial direct current stimulation on the cortical activation by motor task in the human brain: An fMRI study. Neurosci Lett. 2009;460.

    Google Scholar 

  55. Nitsche M, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 2003;15(4):619–26.

    Article  PubMed  Google Scholar 

  56. Stagg CJ, Jayaram G, Pastor D, Kincses ZT, Matthews PM, Johansen-Berg H. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia. 2011;49(5):800–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boggio PS, Castro LO, Savagim EA, Braite R, Cruz VC, Rocha RR, et al. Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci Lett. 2006;404(1–2):232–6.

    Article  CAS  PubMed  Google Scholar 

  58. Reis J, Schambra H, Cohen LG, Buch ER, Fritsch B, Zarahn E, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci USA. 2009;106(5):1590–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baudewig J, Nitsche M, Paulus W, Frahm J. Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magn Reson Med. 2001;45:196–201.

    Article  CAS  PubMed  Google Scholar 

  60. Zheng X, Alsop DC, Schlaug G. Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. Neuroimage. 2011;58(1):26–33.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stagg CJ, Lin RL, Mezue M, Segerdahl A, Kong Y, Xie J, et al. Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. J Neurosci. 2013;33(28):11425–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wachter D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Kutschenko A, et al. Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Exp Neurol. 2011;227(2):322–7.

    Article  PubMed  Google Scholar 

  63. Bottomley PA, Edelstein WA, Foster TH, Adams WA. In vivo solvent-suppressed localized hydrogen nuclear magnetic resonance spectroscopy: a window to metabolism? Proc Natl Acad Sci USA. 1985;82(7):2148–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Provencher SW. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001;14(4):260–4.

    Article  CAS  PubMed  Google Scholar 

  65. Stagg CJ, Bestmann S, Constantinescu AO, Moreno LM, Allman C, Mekle R, et al. Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J Physiol (Lond). 2011;589(Pt 23):5845–55.

    Article  CAS  Google Scholar 

  66. Aroniadou VA, Keller A. Mechanisms of LTP induction in rat motor cortex in vitro. Cereb Cortex. 1995;5(4):353–62.

    Article  CAS  PubMed  Google Scholar 

  67. Trepel C, Racine RJ. GABAergic modulation of neocortical long-term potentiation in the freely moving rat. Synapse. 2000;35(2):120–8.

    Article  CAS  PubMed  Google Scholar 

  68. Trepel C, Racine RJ. Long-term potentiation in the neocortex of the adult, freely moving rat. Cereb Cortex. 1998;8(8):719–29.

    Article  CAS  PubMed  Google Scholar 

  69. Castro-Alamancos MA, Donoghue JP, Connors BW. Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J Neurosci. 1995;15(7 Pt 2):5324–33.

    CAS  PubMed  Google Scholar 

  70. Hess G, Aizenmann C, Donoghue J. Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J Neurophysiol. 1996;75:1765–78.

    CAS  PubMed  Google Scholar 

  71. Nitsche MA, Jaussi W, Liebetanz D, Lang N, Tergau F, Paulus W. Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology. 2004;29(8):1573–8.

    Article  CAS  PubMed  Google Scholar 

  72. Nitsche MA, Liebetanz D, Schlitterlau A, Henschke U, Fricke K, Frommann K, et al. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur J Neurosci. 2004;19(10):2720–6.

    Article  PubMed  Google Scholar 

  73. Lemke C, Hess A, Bachtiar V, Clare S, Stagg CJ, Jezzard P, et al. Two-voxel spectroscopy with dynamic B0 shimming and flip angles at ultra high field. Conference proceedings 22nd Annual Meeting of ISMRM [Internet]. 2013 Nov 14;1–1. Available from: https://mail.google.com/mail/u/0/?shva=1

  74. Salvador R, Wenger C, Miranda PC. Investigating the cortical regions involved in MEP modulation in tDCS. Front Cell Neurosci. 2015;9:291.

    Google Scholar 

  75. Stagg C, Rothman D. Magnetic resonance spectroscopy. San Diego, CA: Elsevier Inc; 2014. 376 p.

    Google Scholar 

  76. Petroff OA, Rothman DL. Measuring human brain GABA in vivo: effects of GABA-transaminase inhibition with vigabatrin. Mol Neurobiol. 1998;16(1):97–121.

    Article  CAS  PubMed  Google Scholar 

  77. Stagg CJ. Magnetic resonance spectroscopy as a tool to study the role of GABA in motor-cortical plasticity. Neuroimage. 2014;86(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  78. Watanabe T, Shiino A, Akiguchi I. Absolute quantification in proton magnetic resonance spectroscopy is superior to relative ratio to discriminate Alzheimer’s disease from Binswanger’s disease. Dement Geriatr Cogn Disord. 2008;26(1):89–100.

    Article  PubMed  Google Scholar 

  79. Stagg CJ, Knight S, Talbot K, Jenkinson M, Maudsley AA, Turner MR. Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS. Neurology. 2013;80(7):610–5.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wardlaw JM, Marshall I, Wild J, Dennis MS, Cannon J, Lewis SC. Studies of acute ischemic stroke with proton magnetic resonance spectroscopy: relation between time from onset, neurological deficit, metabolite abnormalities in the infarct, blood flow, and clinical outcome. Stroke. 1998;29(8):1618–24.

    Article  CAS  PubMed  Google Scholar 

  81. Signoretti S, Di Pietro V, Vagnozzi R. Transient alterations of creatine, creatine phosphate, N-acetylaspartate and high-energy phosphates after mild traumatic brain injury in the rat. Mol Cell Biochem. 2010;333(1–2):269–77.

    Article  CAS  PubMed  Google Scholar 

  82. Vagnozzi R, Signoretti S, Cristofori L, Alessandrini F, Floris R, Isgrò E, et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain. 2010;133(11):3232–42.

    Article  PubMed  Google Scholar 

  83. Brugger S, Davis JM, Leucht S, Stone JM. Proton magnetic resonance spectroscopy and illness stage in schizophrenia—a systematic review and meta-analysis. Biol Psychiatry. 2011;69(5):495–503.

    Article  PubMed  Google Scholar 

  84. Bachtiar V, Stagg CJ. The role of inhibition in human motor cortical plasticity. Neuroscience. 2014;278:93–104.

    Article  CAS  PubMed  Google Scholar 

  85. Kim S, Stephenson MC, Morris PG, Jackson SR. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. Neuroimage. 2014;99:237–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Floyer-Lea A, Wylezinska M, Kincses T, Matthews PM. Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. J Neurophysiol. 2006;95(3):1639–44.

    Article  CAS  PubMed  Google Scholar 

  87. O’Shea J, Boudrias M-H, Stagg CJ, Bachtiar V, Kischka U, Blicher JU, et al. Predicting behavioural response to TDCS in chronic motor stroke. Neuroimage. 2014;85(3):924–33.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rango M, Cogiamanian F, Marceglia S, Barberis B, Arighi A, Biondetti P, et al. Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study. Magn Reson Med. 2008;60(4):782–9.

    Article  CAS  PubMed  Google Scholar 

  89. Clark VP, Coffman BA, Trumbo MC, Gasparovic C. Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1H magnetic resonance spectroscopy study. Neurosci Lett. 2011;500(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  90. Foerster BR, Nascimento TD, DeBoer M, Bender MA, Rice IC, Truong DQ, et al. Brief report: Excitatory and inhibitory brain metabolites as targets of motor cortex transcranial direct current stimulation therapy and predictors of its efficacy in fibromyalgia. Arthritis Rheumatol. 2015;67(2):576–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Alon G, Roys SR, Gullapalli RP, Greenspan JD. Non-invasive electrical stimulation of the brain (ESB) modifies the resting-state network connectivity of the primary motor cortex: a proof of concept fMRI study. doi:10.1016/j.brainres.2011.06.013

    Google Scholar 

  92. Kwon YH, Jang SH. The enhanced cortical activation induced by transcranial direct current stimulation during hand movements. Neurosci Lett. 2011;492.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte J. Stagg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johnstone, A., Hinson, E., Stagg, C.J. (2016). tDCS and Magnetic Resonance Imaging. In: Brunoni, A., Nitsche, M., Loo, C. (eds) Transcranial Direct Current Stimulation in Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-33967-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33967-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33965-8

  • Online ISBN: 978-3-319-33967-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics