Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 920))

Abstract

The regulation of tendon metabolism including the responses to loading is far from being well understood. During the last decade, however, accumulating data show that tendon innervation in addition to afferent functions, via efferent pathways has a regulatory role in tendon homeostasis via a wide range of neuromediators, which coordinate metabolic and neuro-inflammatory pathways.

Innervation of intact healthy tendons is localized in the surrounding structures, i.e paratenon, endotenon and epitenon, whereas the tendon proper is practically devoid of neuronal supply. This anatomical finding reflects that the tendon metabolism is regulated from the tendon envelope, i.e. interfascicular matrix (see Chap. 1).

Tendon innervation after injury and during repair, however, is found as extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of different neuronal mediators, which amplify and fine-tune inflammatory and metabolic pathways in tendon regeneration. After healing nerve fibers retract to the tendon envelope.

In tendinopathy innervation has been identified to consist of excessive and protracted nerve ingrowth in the tendon proper, suggesting pro-inflammatory, nociceptive and hypertrophic (degenerative) tissue responses.

In metabolic disorders such as eg. diabetes impaired tendon healing has been established to be related to dysregulation of neuronal growth factors.

Targeted approaches to the peripheral nervous system including neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magnusson SP, Langberg H, Kjaer M (2010) The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol 6(5):262–268

    Article  PubMed  Google Scholar 

  2. Reeves ND, Maganaris CN, Narici MV (2003) Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol 548(Pt 3):971–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schizas N, Andersson T, Fahlgren A, Aspenberg P, Ahmed M, Ackermann P (2010) Compression therapy promotes proliferative repair during rat Achilles tendon immobilization. J Orthop Res; Jan 7. [Epub ahead of print]

    Google Scholar 

  4. Bring D, Reno C, Renstrom P, Salo P, Hart D, Ackermann P (2009) Prolonged immobilization compromises up-regulation of repair genes after tendon rupture in a rat model. Scand J Med Sci Sports 20(3):411–417

    Google Scholar 

  5. Bring DKI, Reno C, Renstrom P, Salo P, Hart DA, Ackermann PW (2009) Joint immobilization reduces the expression of sensory neuropeptide receptors and impairs healing after tendon rupture in a rat model. J Orthop Res 27(2):274–280

    Article  CAS  PubMed  Google Scholar 

  6. Ackermann PW (2014) Healing and repair mechanism. In: Karlsson J, Calder J, van Diek N (eds) Achilles tendon disorders. Current conceps, 2nd edn. DJO Publications, pp 17–26

    Google Scholar 

  7. Ackermann PW, Salo PT, Hart DA (2009) Neuronal pathways in tendon healing. Front Biosci 14:5165–5187

    Article  CAS  Google Scholar 

  8. Ackermann PW (2001) Peptidergic innervation of periarticular tissue

    Google Scholar 

  9. Stilwell DL Jr (1957) The innervation of tendons and aponeuroses. Am J Anat 100(3):289–317

    Article  PubMed  Google Scholar 

  10. Ackermann PW (2014) Tendinopathies in sports: from basic research to the field. In: Doral MN, Karlsson J (ed) Sports injuries. Springer, Berlin⁄Heidelberg, pp 1–15

    Google Scholar 

  11. Hogervorst T, Brand RA (1998) Mechanoreceptors in joint function. J Bone Joint Surg Am 80(9):1365–1378

    CAS  PubMed  Google Scholar 

  12. Strasmann T, Weihe E, Halata Z (1990) CGRP-like immunoreactivity in sensory nerve endings of the Golgi tendon organ. A light- and electron-microscopic study in the grey short-tailed opossum (Monodelphis domestica). Acta Anat 137(3):278–281

    Article  CAS  PubMed  Google Scholar 

  13. Jozsa L, Kannus P (1997) Human tendons. Anatomy, physiology, and pathology. Human Kinetics, Champaign

    Google Scholar 

  14. Ackermann PW, Franklin SL, Dean BJ, Carr AJ, Salo PT, Hart DA (2014) Neuronal pathways in tendon healing and tendinopathy–update. Front Biosci 19:1251–1278

    Article  Google Scholar 

  15. Hokfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M (1980) Peptidergic neurones. Nature 284(5756):515–521

    Article  CAS  PubMed  Google Scholar 

  16. Audet M, Bouvier M (2012) Restructuring G-protein- coupled receptor activation. Cell 151(1):14–23

    Article  CAS  PubMed  Google Scholar 

  17. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    Article  CAS  PubMed  Google Scholar 

  18. Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature 313(5997):54–56

    Article  CAS  PubMed  Google Scholar 

  19. Brain SD, Williams TJ (1985) Inflammatory oedema induced by synergism between calcitonin gene-related peptide (CGRP) and mediators of increased vascular permeability. Br J Pharmacol 86(4):855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maggi CA (1995) Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog Neurobiol 45(1):1–98

    Article  CAS  PubMed  Google Scholar 

  21. Bring D, Reno C, Renstrom P, Salo P, Hart D, Ackermann P (2010) Prolonged immobilization compromises up-regulation of repair genes after tendon rupture in a rat model. Scand J Med Sci Sports 20(3):411–417

    Article  CAS  PubMed  Google Scholar 

  22. Ackermann PW, Li J, Finn A, Ahmed M, Kreicbergs A (2001) Autonomic innervation of tendons, ligaments and joint capsules. A morphologic and quantitative study in the rat. J Orthop Res 19(3):372–378

    Article  CAS  PubMed  Google Scholar 

  23. Danielson P, Alfredson H, Forsgren S (2006) Immunohistochemical and histochemical findings favoring the occurrence of autocrine/paracrine as well as nerve-related cholinergic effects in chronic painful patellar tendon tendinosis. Microsc Res Tech 69(10):808–819

    Article  CAS  PubMed  Google Scholar 

  24. Danielson P, Alfredson H, Forsgren S (2007) In situ hybridization studies confirming recent findings of the existence of a local nonneuronal catecholamine production in human patellar tendinosis. Microsc Res Tech 70(10):908–911

    Article  CAS  PubMed  Google Scholar 

  25. Danielson P, Alfredson H, Forsgren S (2007) Studies on the importance of sympathetic innervation, adrenergic receptors, and a possible local catecholamine production in the development of patellar tendinopathy (tendinosis) in man. Microsc Res Tech 70(4):310–324

    Article  CAS  PubMed  Google Scholar 

  26. Ljung BO, Forsgren S, Friden J (1999) Sympathetic and sensory innervations are heterogeneously distributed in relation to the blood vessels at the extensor carpi radialis brevis muscle origin of man. Cells Tissues Organs 165(1):45–54

    Article  CAS  PubMed  Google Scholar 

  27. Wall ME, Faber JE, Yang X, Tsuzaki M, Banes AJ (2004) Norepinephrine-induced calcium signaling and expression of adrenoceptors in avian tendon cells. Am J Physiol 287(4):C912–C918

    Article  CAS  Google Scholar 

  28. Wozniak KM, Rojas C, Wu Y, Slusher BS (2012) The role of glutamate signaling in pain processes and its regulation by GCP II inhibition. Curr Med Chem 19(9):1323–1334

    Article  CAS  PubMed  Google Scholar 

  29. Schizas N, Weiss R, Lian O, Frihagen F, Bahr R, Ackermann PW (2012) Glutamate receptors in tendinopathic patients. J Orthop Res 30(9):1447–1452

    Article  CAS  PubMed  Google Scholar 

  30. Scott A, Alfredson H, Forsgren S (2007) VGluT2 expression in painful Achilles and patellar tendinosis: Evidence of local glutamate release by tenocytes. J Orthop Res

    Google Scholar 

  31. Schizas N, Lian O, Frihagen F, Engebretsen L, Bahr R, Ackermann PW (2010) Coexistence of up-regulated NMDA receptor 1 and glutamate on nerves, vessels and transformed tenocytes in tendinopathy. Scand J Med Sci Sports 20(2):208–215

    Article  CAS  PubMed  Google Scholar 

  32. Ackermann PW, Ahmed M, Kreicbergs A (2002) Early nerve regeneration after achilles tendon rupture–a prerequisite for healing? A study in the rat. J Orthop Res 20(4):849–856

    Article  PubMed  Google Scholar 

  33. Ackermann PW, Li J, Lundeberg T, Kreicbergs A (2003) Neuronal plasticity in relation to nociception and healing of rat achilles tendon. J Orthop Res 21(3):432–441

    Article  PubMed  Google Scholar 

  34. Hukkanen M, Konttinen YT, Santavirta S, Paavolainen P, Gu XH, Terenghi G et al (1993) Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience 54(4):969–979

    Article  CAS  PubMed  Google Scholar 

  35. Kishimoto S (1984) The regeneration of substance P-containing nerve fibers in the process of burn wound healing in the guinea pig skin. J Investig Dermatol 83(3):219–223

    Article  CAS  PubMed  Google Scholar 

  36. Li J, Ahmad T, Spetea M, Ahmed M, Kreicbergs A (2001) Bone reinnervation after fracture: a study in the rat. J Bone Miner Res 16(8):1505–1510

    Article  CAS  PubMed  Google Scholar 

  37. Martin P (1997) Wound healing–aiming for perfect skin regeneration. Science (New York) 276(5309):75–81

    Article  CAS  Google Scholar 

  38. Salo PT, Beye JA, Seerattan RA, Leonard CA, Ivie TJ, Bray RC (2008) Plasticity of peptidergic innervation in healing rabbit medial collateral ligament. Can J Surg 51(3):167–172

    PubMed  PubMed Central  Google Scholar 

  39. Aubdool AA, Brain SD (2011) Neurovascular aspects of skin neurogenic inflammation. The journal of investigative dermatology Symposium proceedings/The Society for Investigative Dermatology, Inc [and] European Society for Dermatological Research 15(1):33–39

    Google Scholar 

  40. Molloy TJ, Wang Y, Horner A, Skerry TM, Murrell GA (2006) Microarray analysis of healing rat Achilles tendon: evidence for glutamate signaling mechanisms and embryonic gene expression in healing tendon tissue. J Orthop Res 24(4):842–855

    Article  CAS  PubMed  Google Scholar 

  41. Greve K, Domeij-Arverud E, Labruto F, Edman G, Bring D, Nilsson G et al (2012) Metabolic activity in early tendon repair can be enhanced by intermittent pneumatic compression. Scand J Med Sci Sports 22(4):e55–e63

    Article  CAS  PubMed  Google Scholar 

  42. Ackermann PW, Domeij-Arverud E, Leclerc P, Amoudrouz P, Nader GA (2012) Anti-inflammatory cytokine profile in early human tendon repair. Knee Surg Sports Traumatol Arthrosc

    Google Scholar 

  43. Nilsson J, von Euler AM, Dalsgaard CJ (1985) Stimulation of connective tissue cell growth by substance P and substance K. Nature 315(6014):61–63

    Article  CAS  PubMed  Google Scholar 

  44. Hong HS, Lee J, Lee E, Kwon YS, Lee E, Ahn W et al (2009) A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med 15(4):425–435

    Article  CAS  PubMed  Google Scholar 

  45. Haegerstrand A, Dalsgaard CJ, Jonzon B, Larsson O, Nilsson J (1990) Calcitonin gene-related peptide stimulates proliferation of human endothelial cells. Proc Natl Acad Sci U S A 87(9):3299–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ziche M, Morbidelli L, Pacini M, Geppetti P, Alessandri G, Maggi CA (1990) Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvasc Res 40(2):264–278

    Article  CAS  PubMed  Google Scholar 

  47. Lian O, Dahl J, Ackermann PW, Frihagen F, Engebretsen L, Bahr R (2006) Pronociceptive and antinociceptive neuromediators in patellar tendinopathy. Am J Sports Med 34(11):1801–1808

    Article  PubMed  Google Scholar 

  48. Schubert TE, Weidler C, Lerch K, Hofstadter F, Straub RH (2005) Achilles tendinosis is associated with sprouting of substance P positive nerve fibres. Ann Rheum Dis 64(7):1083–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sanchis-Alfonso V, Rosello-Sastre E, Subias-Lopez A (2001) Neuroanatomic basis for pain in patellar tendinosis (“jumper’s knee”): a neuroimmunohistochemical study. Am J Knee Surg 14(3):174–177

    CAS  PubMed  Google Scholar 

  50. Andersson G, Backman LJ, Scott A, Lorentzon R, Forsgren S, Danielson P (2011) Substance P accelerates hypercellularity and angiogenesis in tendon tissue and enhances paratendinitis in response to Achilles tendon overuse in a tendinopathy model. Br J Sports Med 45(13):1017–1022

    Article  PubMed  Google Scholar 

  51. Backman LJ, Eriksson DE, Danielson P (2014) Substance P reduces TNF-alpha-induced apoptosis in human tenocytes through NK-1 receptor stimulation. Br J Sports Med 48(19):1414–1420

    Article  PubMed  Google Scholar 

  52. Kager I, Mousa SA, Sieper J, Stein C, Pipam W, Likar R (2011) Blockade of intra-articular adrenergic receptors increases analgesic demands for pain relief after knee surgery. Rheumatol Int 31(10):1299–1306

    Article  CAS  PubMed  Google Scholar 

  53. Klatt S, Fassold A, Straub RH (2012) Sympathetic nerve fiber repulsion: testing norepinephrine, dopamine, and 17beta-estradiol in a primary murine sympathetic neurite outgrowth assay. Ann N Y Acad Sci 1261:26–33

    Article  CAS  PubMed  Google Scholar 

  54. Alfredson H, Forsgren S, Thorsen K, Lorentzon R (2001) In vivo microdialysis and immunohistochemical analyses of tendon tissue demonstrated high amounts of free glutamate and glutamate NMDAR1 receptors, but no signs of inflammation, in Jumper's knee. J Orthop Res 19(5):881–886

    Article  CAS  PubMed  Google Scholar 

  55. Madden DR (2002) The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3(2):91–101

    Article  CAS  PubMed  Google Scholar 

  56. Bring DK, Paulson K, Renstrom P, Salo P, Hart DA, Ackermann PW (2012) Residual substance P levels after capsaicin treatment correlate with tendon repair. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair. Society 20(1):50–60

    Google Scholar 

  57. Ivie TJ, Bray RC, Salo PT (2002) Denervation impairs healing of the rabbit medial collateral ligament. J Orthop Res 20(5):990–995

    Article  CAS  PubMed  Google Scholar 

  58. Grorud KW, Jensen KT, Provenzano PP, Vanderby R Jr (2007) Adjuvant neuropeptides can improve neuropathic ligament healing in a rat model. J Orthop Res 25(6):703–712

    Article  CAS  PubMed  Google Scholar 

  59. Dwyer KW, Provenzano PP, Muir P, Valhmu WB, Vanderby R Jr (2004) Blockade of the sympathetic nervous system degrades ligament in a rat MCL model. J Appl Physiol 96(2):711–718

    Article  CAS  PubMed  Google Scholar 

  60. Ramchurn N, Mashamba C, Leitch E, Arutchelvam V, Narayanan K, Weaver J et al (2009) Upper limb musculoskeletal abnormalities and poor metabolic control in diabetes. Eur J Int Med 20(7):718–721

    Article  Google Scholar 

  61. Pradhan L, Nabzdyk C, Andersen ND, LoGerfo FW, Veves A (2009) Inflammation and neuropeptides: the connection in diabetic wound healing. Exp Rev Mol Med 11, e2

    Article  Google Scholar 

  62. Ahmed AS, Schizas N, Li J, Ahmed M, Ostenson CG, Salo P et al (2012) Type 2 diabetes impairs tendon repair after injury in a rat model. J Appl Physiol 113(11):1784–1791

    Article  CAS  PubMed  Google Scholar 

  63. Bring DK, Kreicbergs A, Renstrom PA, Ackermann PW (2007) Physical activity modulates nerve plasticity and stimulates repair after Achilles tendon rupture. J Orthop Res 25(2):164–172

    Article  PubMed  Google Scholar 

  64. Ytteborg E, Torgersen JS, Pedersen ME, Helland SJ, Grisdale-Helland B, Takle H (2013) Exercise induced mechano-sensing and Substance P mediated bone modeling in Atlantic salmon. Bone 53(1):259–268

    Article  CAS  PubMed  Google Scholar 

  65. Jonsdottir IH (2000) Special feature for the Olympics: effects of exercise on the immune system: neuropeptides and their interaction with exercise and immune function. Immunol Cell Biol 78(5):562–570

    Article  CAS  PubMed  Google Scholar 

  66. Ackermann PW, Finn A, Ahmed M (1999) Sensory neuropeptidergic pattern in tendon, ligament and joint capsule. A study in the rat. Neuroreport 10(10):2055–2060

    Article  CAS  PubMed  Google Scholar 

  67. Ackermann PW, Spetea M, Nylander I, Ploj K, Ahmed M, Kreicbergs A (2001) An opioid system in connective tissue: a study of achilles tendon in the rat. J Histochem Cytochem 49(11):1387–1395

    Article  CAS  PubMed  Google Scholar 

Download references

Funding Source

Studies from the author’s laboratories were supported by the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet (project nr. SLL 20110177), and the Swedish National Centre for Research in Sports, as well as the Swedish Medical Research Council (2012–3510) (PWA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Ackermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ackermann, P.W., Salo, P., Hart, D.A. (2016). Tendon Innervation. In: Ackermann, P., Hart, D. (eds) Metabolic Influences on Risk for Tendon Disorders. Advances in Experimental Medicine and Biology, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-319-33943-6_4

Download citation

Publish with us

Policies and ethics